Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YI Hongxue, LI Jie, WANG Yae, ZHAO Wei, XIE Huina, ZHANG Wenli, QUAN Hairong, MU Hao, HU Kaiyao. EFFECTS OF ACHROMOBACTER DENITRIFICANS STRAIN 2-5 WITH IRON OXIDATION AND AEROBIC DENITRIFICATION FUNCTION ON BIOLOGICAL NITROGEN REMOVAL PERFORMANCE AND COMMUNITY STRUCTURE IN A SEQUENCING BATCH REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 211-216. doi: 10.13205/j.hjgc.202212028
Citation: KANG De-jun, LÜ Jiang-du, TUO Xiang-yin, CAI Jin-shui, GONG Ya-ping, ZHAO Ying. POLLUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN COVERING SOIL SYSTEM OF A COAL GANGUE HILL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 158-166. doi: 10.13205/j.hjgc.202209021

POLLUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN COVERING SOIL SYSTEM OF A COAL GANGUE HILL

doi: 10.13205/j.hjgc.202209021
  • Received Date: 2021-06-11
    Available Online: 2022-11-09
  • Soil covering has been used to isolate coal gangue from oxygen, and it can rapidly remediate coal gangue waste. However, the coal gangue which has long-term piled can release heavy metals under the rain leaching and groundwater soaking, which will diffuse to the surrounding soil with water flow. Meanwhile, the released heavy metals will also migrate to the upper covering soil under the action of soil capillarity and plant root activity, therefore impact soil quality. We chose a coal gangue hill in Ningdong, Ningxia as the research object, and analyzed the spatial distribution characteristics of Cu, Zn, Pb, Cr, Cd, As, Mn, and Ni in the covering soil at different depths of the coal gangue hill and the surrounding soil within 0~200 m distance from the coal gangue hill. We also explored the status quo of soil environmental quality, and comprehensively assessed the potential ecological risks of soils. The results showed that Cr was the main pollutant in the study area. Cr content in the covering soils was higher than the control in 86.36% of the sampling sites, and Cr content was higher than that of the soil background value of the control point in 100% and 50% of the sampling sites of the surrounding surface soil and deep soil, respectively. Toxic heavy metals in coal gangue migrated to the covering soil to a certain extent, and the heavy metals in the soil directly contacting with coal gangue layer were enriched obviously. The coal gangue dust diffusion is the main way to enrich heavy metals in the surrounding soil, and its significant influence range was within 10 m of the gangue hill. The potential ecological risk index(RI) of soils around the coal gangue hill ranged from 40.80~63.31, indicating that the pollution extent was all slight. RI value of the covering soil was between 44.83~70.54, and the pollution extent was of only one sampling point reached the medium level.
  • [1]
    党倩楠,王进鑫,姚丽霞,等.干旱荒漠区煤矸石山覆土区土壤水分物理性质的空间异质性[J].应用生态学报,2021,32(1):281-288.
    [2]
    HUA C Y,ZHOU G Z,YIN X,et al.Assessment of heavy metal in coal gangue:distribution,leaching characteristic and potential ecological risk[J].Environmental Science and Pollution Research International,2018,25(32):32321-32331.
    [3]
    JING X,LU W X,ZHAO H Q,et al.Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump[J].Natural Hazards and Earth System Science,2014,14(6):1599-1610.
    [4]
    LU X W,XUE X Y,ZHOU X.Enrichment condition and security risk assessment of heavy metals in soil-crops system around the gangue dumps[J].IOP Conference Series:Earth and Environmental Science,2018,170(5).
    [5]
    LIU Y,SONG J F,XUE B,et al.Leaching behavior and potential environmental effects of trace elements in coal gangue of an open-cast coal mine area,Inner Mongolia,China[J].Minerals,2016,6(2):50.
    [6]
    王世林,牛文静,张攀,等.煤矸石的研究现状与应用[J].江西化工,2019(5):69-71.
    [7]
    WANG S B,LUO K L,WANG X,et al.Estimate of sulfur,arsenic,mercury,fluorine emissions due to spontaneous combustion of coal gangue:an important part of Chinese emission inventories[J].Environmental Pollution,2016,209:107-113.
    [8]
    赵玉林,肖昕.煤矸石充填复垦区域土壤重金属空间分布特征[J].中国环保产业,2016(11):69-72.
    [9]
    陈孝杨,刘鑫尧,严家平.煤矸充填复垦土壤可溶性镉的分布特征与运移模拟[J].农业环境科学学报,2012,31(9):1734-1738.
    [10]
    郭慧霞,杨建,王心义,等.焦作矿区土壤对煤矸石中污染组分的吸附解吸试验[J].农业环境科学学报,2008,27(1):194-199.
    [11]
    高宇,杜亮亮,海龙.宁东矿区土壤重金属元素垂直分布特征研究[J].世界有色金属,2017(18):264-265.
    [12]
    邵群.新庄孜矿塌陷区煤矸石中重金属迁移对覆土影响[J].煤田地质与勘探,2007(6):34-36.
    [13]
    陈健.土壤pH测试方法及应用分析[J].化工设计通讯,2020,46(4):230,260.
    [14]
    中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1978.
    [15]
    黄春兰.土壤有机质的分光光度测定[J].热带作物研究,1990(4):51-52.
    [16]
    王圣瑞.湖泊沉积物-水界面过程[M].北京:科学出版社,2013.
    [17]
    NALAN K,DENGİZ O.Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological condition[J].Eurasian Journal of Soil Science,2020,9(3):194-201.
    [18]
    熊鸿斌,陈神剑.基于Monte Carlo-Hakanson模型的土壤重金属生态风险评价研究[J].农业环境科学学报,2020,39(8):1706-1712.
    [19]
    DOU L,LI W P,SUN Y Q,et al.Release activity and potential ecological risk assessment of heavy metals in coal gangue of Hancheng,China[J].International Journal of Energy and Power Engineering,2015,4(5):304-310.
    [20]
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [21]
    HAKANSON L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14(8):975-1001.
    [22]
    吕占禄,张金良,邹天森,等.燃煤电厂周边土壤重金属污染特征及评价[J].环境工程技术学报,2019,9(6):720-731.
    [23]
    李一蒙,马建华,刘德新,等.开封城市土壤重金属污染及潜在生态风险评价[J].环境科学,2015,36(3):1037-1044.
    [24]
    范明毅,杨皓,黄先飞,等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学,2016,36(8):2425-2436.
    [25]
    成杭新,李括,李敏,等.中国城市土壤化学元素的背景值与基准值[J].地学前缘,2014,21(3):265-306.
    [26]
    何灵芝,张熙,徐代刚,等.万山区耕地土壤养分含量分布[J].农技服务,2020,37(6):9-11.
    [27]
    XU S S,ZHAO Q H,QIN C Z,et al.Effects of vegetation restoration on accumulation and translocation of heavy metals in post-mining areas[J].Land Degradation & Development,2021,32(5):2000-2012.
    [28]
    王新,贾永锋.紫花苜蓿对土壤重金属富集及污染修复的潜力[J].土壤通报,2009,40(4):932-935.
    [29]
    姜娜,杨京民,GAHONZIRE B,等.牧草在重金属污染土壤治理中的修复和综合利用潜力[J].生态与农村环境学报,2021,37(5):545-554.
    [30]
    YAO D X,MENG J,ZHANG Z G.Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area[J].Journal of Coal Science and Engineering (China),2010,16(3):316-319.
    [31]
    张卫国,杨帆,张池,等.陕南地区石煤矸石中主要伴生元素迁移规律研究[J].煤炭科学技术,2021,49(3):189-193.
    [32]
    杨建,陈家军,王心义.煤矸石堆周围土壤重金属污染空间分布及评价[J].农业环境科学学报,2008,27(3):873-878.
    [33]
    魏忠义,陆亮,王秋兵.抚顺西露天矿大型煤矸石山及其周边土壤重金属污染研究[J].土壤通报,2008,39(4):946-949.
    [34]
    杨娅,季宏兵.新化矿区煤矸石中微量元素赋存形态及浸出特征[J].地球与环境,2016,44(1):36-46.
    [35]
    李多杰,孙厚云,卫晓锋,等.内蒙古兴安盟某铅锌矿土壤重金属空间分布特征与生态风险评价[J].矿产勘查,2021,12(4):1030-1039.
    [36]
    吕占禄,张金良,张晗,等.生物质能电厂周边土壤中重金属元素污染特征及评价[J].环境化学,2020,39(12):3480-3494.
    [37]
    HUANG X F,HU J W,QIN F X,et al.Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China)[J].Multidisciplinary Digital Publishing Institute,2017,14(12):1589.
    [38]
    HIRSCHFELD H O.A connection between correlation and contingency[J].Mathematical Proceedings of the Cambridge Philosophical Society,1935,31(4):520-524.
    [39]
    戚赏,吕灯,杜丹,等.煤矸石场地重金属元素空间分布与迁移过程研究[J].西部资源,2020(6):18-19,22.
  • Relative Articles

    [1]LIANG Lichen, YAN Xiaofei, WANG Lili, JIANG Hao, XU Yuanshun. SOIL HEAVY METAL POLLUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF A SIMPLE DOMESTIC GARBAGE LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 177-187. doi: 10.13205/j.hjgc.202410021
    [2]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [3]GAO Mengfei, ZHENG Shun'an, LIU Changhua, GAO Yunbing, GAO Ge, ZHAO Ya'nan. RISK ASSESSMENT OF HEAVY METAL POLLUTION IN FARMLAND SOIL BASED ON MULTI-FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 233-241. doi: 10.13205/j.hjgc.202308030
    [4]LI Ganyu, CUI Xingtao. CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 278-287. doi: 10.13205/j.hjgc.202312035
    [5]GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014
    [6]LI Mei, WEN Bing, YING Rongrong, ZHANG Shengtian, LONG Tao, XIA Bing, WANG Lei, CAO Shaohua, WU Xiaofen. DISCUSSION ON KEY TECHNICAL PARAMETERS AND PROCESS METHODS OF GROUNDWATER ENVIRONMENTAL INVESTIGATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 227-235. doi: 10.13205/j.hjgc.202312028
    [7]YOU Yangyang, LIANG Zengqiang, HUO Ning. GROUNDWATER EVALUATION OF INFORMAL LANDFILLS BASED ON WATER QUALITY IDENTIFICATION INDEX METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 264-269,311. doi: 10.13205/j.hjgc.202312033
    [8]DU Xiaoli, CHI Zhongwen, YIN Zijie, ZHAO Meng. ATTENUATION ON CONTROL EFFECT OF HEAVY METALS IN RUNOFF BY PERMEABLE BRICK DURING THE WHOLE PROCESS OF BLOCKAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 1-8. doi: DOI:10.13205/j.hjgc.202207001
    [9]LU Yifan, LU Yin, CAI Hui, SUN Shoujun, SHI Weilin. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN FIELD LEFT BY A LEAD-ACID BATTERY FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 135-140,189. doi: 10.13205/j.hjgc.202201020
    [10]ZHANG Yuchen, CHEN Xiaoduo, GUI Si, SU Hua, ZHANG Weifang, LIU Changqing, WU Chunshan, ZHENG Yuyi. MINERAL COMPONENTS AND HEAVY METAL POLLUTION CHARACTERISTICS IN WASTE INCINERATION FLY ASH IN FUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 102-109. doi: 10.13205/j.hjgc.202208014
    [11]TU Degang, FENG Tao, YANG Guodong, LUO Weiwei, NIE Beili. POLLUTION ANALYSIS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN AN ABANDONED MACHINERY PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 217-223. doi: 10.13205/j.hjgc.202204031
    [12]LIANG Yu, YAN Haihong, YIN Qin, NIAN Yuegang, ZHANG Xianqi, WANG Xingzhi. RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 188-195,223. doi: 10.13205/j.hjgc.202204027
    [13]NI Haifeng, DAN Zeng, ZHOU Wenwu, ZHOU Peng, XU Fei, YANG Tao, MENG Dean, CHEN Guanyi. CHARACTERISTICS ANALYSIS AND RISK ASSESSMENT OF HEAVY METALS OF WASTE INCINERATION FLY ASH IN LHASA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 89-93,131. doi: 10.13205/j.hjgc.202203014
    [14]ZHENG Ying-yi, LIU Jie, JIANG Ping-ping, YOU Shao-hong, ZHOU Shu-lin, YU Guo. POLLUTION ASSESSMENT OF HEAVY METALS IN FARMLAND SOILS AROUND AN ABANDONED SMELTER IN HECHI, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 238-245. doi: 10.13205/j.hjgc.202105033
    [15]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [16]MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023
    [17]LIU Zhao, ZHOU Hong, LIU Wei, CAO Wen-jia, LAN Sheng-tao. HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 196-203. doi: 10.13205/j.hjgc.202105028
    [18]LIU Chun-yue, WANG Hui, BAI Ming-yue, ZHAO Yue-ming, WU Hao, WANG Xiao-xu, ZHAO Si-cong. RISK ASSESSMENT AND CHARACTERISTICS OF HEAVY METALS IN SURFACE SOIL OF OLD TOWN OF SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 167-171. doi: 10.13205/j.hjgc.202001027
    [19]ZHANG Fu-xiang, CUI Song, ZHU Qian-de, GAO Shang, LI Kun-yang. POLLUTION CHARACTERISTIC AND RISK ASSESSMENT OF HEAVY METALS IN AQUATIC ENVIRONMENT OF QIXING RIVER WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 68-75. doi: 10.13205/j.hjgc.202010011
  • Cited by

    Periodical cited type(3)

    1. 谷立坤,张建云,徐浩,侯志康,邵霜霜,张曼,仲少攀,白志辉. 郑州市景观植物石楠叶际细菌群落结构及反硝化功能. 中国环境科学. 2024(09): 5160-5168 .
    2. 韩奕彤,罗育池,王刚,刘畅,宋宝德,秘昭旭,王先稳. 典型离子型稀土矿区氮污染地下水原位微生物修复技术研究. 环境科学研究. 2024(11): 2391-2400 .
    3. 杨春玉,董战峰,顾湘,汪俊峰. 中国公众空气质量感知的时空演化及其驱动因素分析. 环境科学研究. 2024(12): 2653-2664 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.2 %FULLTEXT: 7.2 %META: 86.9 %META: 86.9 %PDF: 5.9 %PDF: 5.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %China: 1.5 %China: 1.5 %Seattle: 0.3 %Seattle: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.3 %[]: 0.3 %三亚: 0.3 %三亚: 0.3 %上海: 9.2 %上海: 9.2 %东京: 0.3 %东京: 0.3 %东莞: 2.1 %东莞: 2.1 %中山: 0.8 %中山: 0.8 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.8 %保定: 0.8 %兰州: 0.5 %兰州: 0.5 %北京: 4.6 %北京: 4.6 %十堰: 1.0 %十堰: 1.0 %南京: 1.0 %南京: 1.0 %南昌: 0.5 %南昌: 0.5 %南通: 0.3 %南通: 0.3 %南阳: 0.3 %南阳: 0.3 %台州: 1.3 %台州: 1.3 %嘉兴: 0.5 %嘉兴: 0.5 %四平: 0.3 %四平: 0.3 %天津: 4.6 %天津: 4.6 %太原: 0.3 %太原: 0.3 %威海: 0.8 %威海: 0.8 %娄底: 0.3 %娄底: 0.3 %宁德: 0.3 %宁德: 0.3 %宜昌: 0.8 %宜昌: 0.8 %宣城: 0.3 %宣城: 0.3 %常州: 1.0 %常州: 1.0 %常德: 0.3 %常德: 0.3 %广州: 2.6 %广州: 2.6 %张家口: 0.5 %张家口: 0.5 %徐州: 0.3 %徐州: 0.3 %德阳: 0.3 %德阳: 0.3 %成都: 1.3 %成都: 1.3 %扬州: 1.8 %扬州: 1.8 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.6 %杭州: 2.6 %武汉: 2.1 %武汉: 2.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 1.0 %沧州: 1.0 %济源: 0.5 %济源: 0.5 %海口: 0.3 %海口: 0.3 %淄博: 0.5 %淄博: 0.5 %淮南: 0.3 %淮南: 0.3 %深圳: 0.5 %深圳: 0.5 %温州: 1.0 %温州: 1.0 %湖州: 1.8 %湖州: 1.8 %漯河: 3.1 %漯河: 3.1 %潍坊: 0.3 %潍坊: 0.3 %烟台: 0.5 %烟台: 0.5 %珠海: 0.3 %珠海: 0.3 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.3 %福州: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 19.2 %芒廷维尤: 19.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %西宁: 2.8 %西宁: 2.8 %西安: 0.3 %西安: 0.3 %贵阳: 0.8 %贵阳: 0.8 %运城: 2.6 %运城: 2.6 %遵义: 0.3 %遵义: 0.3 %邯郸: 1.3 %邯郸: 1.3 %郑州: 1.0 %郑州: 1.0 %重庆: 0.8 %重庆: 0.8 %锦州: 0.3 %锦州: 0.3 %长沙: 0.5 %长沙: 0.5 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.5 %青岛: 0.5 %黔东南: 0.3 %黔东南: 0.3 %其他ChinaSeattleUnited States[]三亚上海东京东莞中山临汾乌鲁木齐保定兰州北京十堰南京南昌南通南阳台州嘉兴四平天津太原威海娄底宁德宜昌宣城常州常德广州张家口徐州德阳成都扬州昆明晋城朝阳杭州武汉沈阳沧州济源海口淄博淮南深圳温州湖州漯河潍坊烟台珠海盐城石家庄福州聊城芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州重庆锦州长沙长治阳泉青岛黔东南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (225) PDF downloads(5) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return