Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 9
Nov.  2022
Turn off MathJax
Article Contents
LI Wei, AN Xian-jin. DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 178-185,214. doi: 10.13205/j.hjgc.202209024
Citation: LI Wei, AN Xian-jin. DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 178-185,214. doi: 10.13205/j.hjgc.202209024

DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA

doi: 10.13205/j.hjgc.202209024
  • Received Date: 2022-05-13
    Available Online: 2022-11-09
  • Study of typical polycyclic aromatic hydrocarbons(PAHs) in rocky desertification soil and the physicochemical properties of rocky desertification soil effect on the migration mechanism of PAHs, typical lime soil in the different rocky desertification areas in Guizhou was carried out. Phenanthrene and pyrene were selected as the subjects, and batch desorption method combined with Pearson correlation analysis was used to study the desorption behavior of these two pollutants in different solutions. The results showed that the higher the rocky desertification grades, the easier the desorption of phenanthrene and pyrene, with the desorption hysteresis coefficient(HI) of phenanthrene and pyrene decreased from 0.73 and 0.46 for non-rocky desertification, to 0.54 and 0.28 for strong rocky desertification, respectively. The nonlinear index(N) of phenanthrene and pyrene was increased from 0.514 and 0.557 for non-rocky desertification, to 0.606 and 0.637 for strong rocky desertification, respectively. The results of desorption kinetic showed that as the rocky desertification grade increased, the fast desorption fraction(Frap) of phenanthrene and pyrene was increased and the amplification was 24.14% and 18.14%, respectively; the fast desorption rate(Krap) of phenanthrene and pyrene was increased from 6.56 and 1.26 h-1 to 8.16 and 7.98 h-1, respectively. The four primary parameters affecting the desorption of phenanthrene and pyrene in rocky desertification grades soil in Guizhou province were soil organic matter content, degree of porosity, specific surface area and cation exchange capacity, which were all negatively correlated with the desorption capacity of phenanthrene and pyrene in rocky desertification soil. The abundant calcium in rocky desertification soil was also an essential factor in the effect of phenanthrene and pyrene desorption, and in the electrolyte solution, Ca2+ enhanced the desorption of phenanthrene and pyrene compared to trials under different desorption conditions. The study found that phenanthrene and pyrene desorption were easier in soil with higher rocky desertification grade, which was closely related to the calcium-rich properties of the soil.
  • loading
  • [1]
    巫俊楫,宁寻安.印染污泥性质对多环芳烃分布及经US-Fenton处理后降解的影响[J].环境工程,2022,40(2):106-112.
    [2]
    罗庆,谷雷严,单岳,等.基于蒙特卡罗模拟的沈阳城市表层土壤中多环芳烃的健康风险评价[J].环境工程,2020,38(5):196-201

    ,222.
    [3]
    LIU Y,XIE S Y,SUN Y J,et al.In-situ and ex-situ measurement of hydrophobic organic contaminants in soil air based on passive sampling:PAH exchange kinetics,non-equilibrium correction and comparison with traditional estimations[J].Journal of Hazardous Materials,2021,410:124646.
    [4]
    YU H Y,LI T J,LIU Y,et al.Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China[J].Chemosphere,2019,230:498-509.
    [5]
    TAN W,LIU N,DANG Q,et al.Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants[J].Environmental Pollution,2020,264:114678.
    [6]
    YAN D,WU S,ZHOU S,et al.Characteristics,sources and health risk assessment of airborne particulate PAHS in Chinese cities:a review[J].Environmental Pollution,2019,248:804-814.
    [7]
    DENG Y,WANG S,BAI X,et al.Relationship among land surface temperature and LUCC,NDVI in typical karst area[J].Scientific Reports,2018,8(1):1-12.
    [8]
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [9]
    罗雪梅,刘昌明.离子强度对土壤与沉积物吸附多环芳烃的影响研究[J].生态环境,2006,15(5):983-987.
    [10]
    陈刚,程莉蓉,丁爱中.金属离子对长期污染土壤中多环芳烃解吸的影响[J].环境科学学报,2012,32(7):1708-1716.
    [11]
    AN X J,LI W,DI X Y,et al.Effects of supergene geochemical processes on desorption and bioavailability of polycyclic aromatic hydrocarbons in soil of karst area[J].Environmental Pollutants and Bioavailability,2021,33(1):402-414.
    [12]
    文林琴,栗忠飞.2004-2016年贵州省石漠化状况及动态演变特征[J].生态学报,2020,40(17):5928-5939.
    [13]
    李瑞玲,王世杰,熊康宁,等.喀斯特石漠化评价指标体系探讨:以贵州省为例[J].热带地理,2004,24(2):145-149.
    [14]
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [15]
    中华人民共和国农业部.中华人民共和国农业行业标准:NY/T 1121.5-2006[S].
    [16]
    郭金瑞,宋振伟,朱平,等.长期不同种植模式对东北黑土微生物群落结构与土壤理化性质的影响[J].土壤通报,2016,47(2):353-359.
    [17]
    马妍,程芦,阮子渊,等.近20年中国表层土壤中多环芳烃时空分布特征及源解析[J].环境科学,2021,42 (3):1065-1072.
    [18]
    LIU J L,ZHANG S Y,JIA J L,et al.Distribution and source apportionment of polycyclic aromatic hydrocarbons in soils at different distances and depths around three power plants in Bijie,Guizhou Province[J].Polycyclic Aromatic Compounds,2022.039232.
    [19]
    李俊国,孙红文.芘在土壤中的长期吸附和解吸行为[J].环境科学,2006,27(1):165-170.
    [20]
    安显金,肖保华,邸欣月,等.无机沉淀对土壤有机质吸附疏水有机污染物的影响[J].地球与环境,2016,44(5):572-580.
    [21]
    HUANG W L,WEBER W J.A Distributed reactivity model for sorption by soils and sediments.10.relationships between desorption,hysteresis,and the chemical characteristics of organic domains[J].Environmental Science&Technology,1997,31(9):2562-2569.
    [22]
    DAI C,HAN Y,DUAN Y,et al.Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments[J].Environmental Research,2022,205:112423.
    [23]
    罗晓丽,齐亚超,张承东,等.多环芳烃在中国两种典型土壤中的吸附和解吸行为研究[J].环境科学学报,2008,28(7):1375-1380.
    [24]
    SUN H W,YAN Q S.Influence of fenton oxidation on soil organic matter and its sorption and desorption of pyrene[J].Journal of Hazardous Materials,2007,144(1/2):164-170.
    [25]
    SUN M M,YE M,HU F,et al.Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHS under denitrifying conditions in a red paddy soil[J].Journal of Hazardous Materials,2014,264:505-513.
    [26]
    白云星,周运超,周鑫伟,等.喀斯特土壤与喀斯特区域土壤关系的探讨:以贵州省普定县后寨河小流域为例[J].土壤,2020,52(2):414-420.
    [27]
    BIELSKÁL,ŠKULCOVÁL,NEUWIRTHOVÁN,et al.Sorption,bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils[J].Science of the Total Environment,2018,624:78-86.
    [28]
    LAMICHHANE S,BAL KRISHNA K C,SARUKKALIGE R.Polycyclic aromatic hydrocarbons (PAHS) removal by sorption:a review[J].Chemosphere,2016,148:336-353.
    [29]
    HAN L F,SUN K,JIN J,et al.Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter[J].Environmental Science&Technology,2014,48(19):11227-11234.
    [30]
    YANG K,XING B S.Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J].Environmental Pollution,2007,145(2):529-537.
    [31]
    WU W H,MIAO G F,YAN X X,et al.Correlations and prediction of adsorption capacity and affinity of aromatic compounds on activated carbons[J].Science of the Total Environment,2020,704:135457.
    [32]
    CHEN W,HOU L,LUO X L,et al.Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils[J].Environmental Pollution,2009,157(6):1894-1903.
    [33]
    ERIKSSON M,KA J O,MOHN W W.Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic Tundra soil[J].Applied and Environmental Microbiology,2001,67(11):5107-5112.
    [34]
    MA W L,LIU L Y,JIA H L,et al.PAHs in Chinese atmosphere part I:concentration,source and temperature dependence[J].Atmospheric Environment,2018,173:330-337.
    [35]
    DUAN L C,NAIDU R.Effect of ionic strength and index cation on the sorption of phenanthrene[J].Water,Air,&Soil Pollution,2013,224(12):1-17.
    [36]
    吴文伶,孙红文.菲在沉积物上的吸附-解吸研究[J].环境科学,2009,30(4):1133-1138.
    [37]
    PEARSON R G.The HSAB principle-more quantitative aspects[J].Inorganica Chimica Acta,1995,240(1/2):93-98.
    [38]
    BARNIER C,OUVRARD S,ROBIN C,et al.Desorption kinetics of PAHs from aged industrial soils for availability assessment[J].Science of the Total Environment,2014,470/471:639-645.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return