Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: LI Wei, AN Xian-jin. DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 178-185,214. doi: 10.13205/j.hjgc.202209024

DESORPTION BEHAVIOR OF PHENANTHRENE AND PYRENE IN ROCKY DESERTIFICATION SOIL IN GUIZHOU, CHINA

doi: 10.13205/j.hjgc.202209024
  • Received Date: 2022-05-13
    Available Online: 2022-11-09
  • Study of typical polycyclic aromatic hydrocarbons(PAHs) in rocky desertification soil and the physicochemical properties of rocky desertification soil effect on the migration mechanism of PAHs, typical lime soil in the different rocky desertification areas in Guizhou was carried out. Phenanthrene and pyrene were selected as the subjects, and batch desorption method combined with Pearson correlation analysis was used to study the desorption behavior of these two pollutants in different solutions. The results showed that the higher the rocky desertification grades, the easier the desorption of phenanthrene and pyrene, with the desorption hysteresis coefficient(HI) of phenanthrene and pyrene decreased from 0.73 and 0.46 for non-rocky desertification, to 0.54 and 0.28 for strong rocky desertification, respectively. The nonlinear index(N) of phenanthrene and pyrene was increased from 0.514 and 0.557 for non-rocky desertification, to 0.606 and 0.637 for strong rocky desertification, respectively. The results of desorption kinetic showed that as the rocky desertification grade increased, the fast desorption fraction(Frap) of phenanthrene and pyrene was increased and the amplification was 24.14% and 18.14%, respectively; the fast desorption rate(Krap) of phenanthrene and pyrene was increased from 6.56 and 1.26 h-1 to 8.16 and 7.98 h-1, respectively. The four primary parameters affecting the desorption of phenanthrene and pyrene in rocky desertification grades soil in Guizhou province were soil organic matter content, degree of porosity, specific surface area and cation exchange capacity, which were all negatively correlated with the desorption capacity of phenanthrene and pyrene in rocky desertification soil. The abundant calcium in rocky desertification soil was also an essential factor in the effect of phenanthrene and pyrene desorption, and in the electrolyte solution, Ca2+ enhanced the desorption of phenanthrene and pyrene compared to trials under different desorption conditions. The study found that phenanthrene and pyrene desorption were easier in soil with higher rocky desertification grade, which was closely related to the calcium-rich properties of the soil.
  • [1]
    巫俊楫,宁寻安.印染污泥性质对多环芳烃分布及经US-Fenton处理后降解的影响[J].环境工程,2022,40(2):106-112.
    [2]
    罗庆,谷雷严,单岳,等.基于蒙特卡罗模拟的沈阳城市表层土壤中多环芳烃的健康风险评价[J].环境工程,2020,38(5):196-201

    ,222.
    [3]
    LIU Y,XIE S Y,SUN Y J,et al.In-situ and ex-situ measurement of hydrophobic organic contaminants in soil air based on passive sampling:PAH exchange kinetics,non-equilibrium correction and comparison with traditional estimations[J].Journal of Hazardous Materials,2021,410:124646.
    [4]
    YU H Y,LI T J,LIU Y,et al.Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China[J].Chemosphere,2019,230:498-509.
    [5]
    TAN W,LIU N,DANG Q,et al.Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants[J].Environmental Pollution,2020,264:114678.
    [6]
    YAN D,WU S,ZHOU S,et al.Characteristics,sources and health risk assessment of airborne particulate PAHS in Chinese cities:a review[J].Environmental Pollution,2019,248:804-814.
    [7]
    DENG Y,WANG S,BAI X,et al.Relationship among land surface temperature and LUCC,NDVI in typical karst area[J].Scientific Reports,2018,8(1):1-12.
    [8]
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [9]
    罗雪梅,刘昌明.离子强度对土壤与沉积物吸附多环芳烃的影响研究[J].生态环境,2006,15(5):983-987.
    [10]
    陈刚,程莉蓉,丁爱中.金属离子对长期污染土壤中多环芳烃解吸的影响[J].环境科学学报,2012,32(7):1708-1716.
    [11]
    AN X J,LI W,DI X Y,et al.Effects of supergene geochemical processes on desorption and bioavailability of polycyclic aromatic hydrocarbons in soil of karst area[J].Environmental Pollutants and Bioavailability,2021,33(1):402-414.
    [12]
    文林琴,栗忠飞.2004-2016年贵州省石漠化状况及动态演变特征[J].生态学报,2020,40(17):5928-5939.
    [13]
    李瑞玲,王世杰,熊康宁,等.喀斯特石漠化评价指标体系探讨:以贵州省为例[J].热带地理,2004,24(2):145-149.
    [14]
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [15]
    中华人民共和国农业部.中华人民共和国农业行业标准:NY/T 1121.5-2006[S].
    [16]
    郭金瑞,宋振伟,朱平,等.长期不同种植模式对东北黑土微生物群落结构与土壤理化性质的影响[J].土壤通报,2016,47(2):353-359.
    [17]
    马妍,程芦,阮子渊,等.近20年中国表层土壤中多环芳烃时空分布特征及源解析[J].环境科学,2021,42 (3):1065-1072.
    [18]
    LIU J L,ZHANG S Y,JIA J L,et al.Distribution and source apportionment of polycyclic aromatic hydrocarbons in soils at different distances and depths around three power plants in Bijie,Guizhou Province[J].Polycyclic Aromatic Compounds,2022.039232.
    [19]
    李俊国,孙红文.芘在土壤中的长期吸附和解吸行为[J].环境科学,2006,27(1):165-170.
    [20]
    安显金,肖保华,邸欣月,等.无机沉淀对土壤有机质吸附疏水有机污染物的影响[J].地球与环境,2016,44(5):572-580.
    [21]
    HUANG W L,WEBER W J.A Distributed reactivity model for sorption by soils and sediments.10.relationships between desorption,hysteresis,and the chemical characteristics of organic domains[J].Environmental Science&Technology,1997,31(9):2562-2569.
    [22]
    DAI C,HAN Y,DUAN Y,et al.Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments[J].Environmental Research,2022,205:112423.
    [23]
    罗晓丽,齐亚超,张承东,等.多环芳烃在中国两种典型土壤中的吸附和解吸行为研究[J].环境科学学报,2008,28(7):1375-1380.
    [24]
    SUN H W,YAN Q S.Influence of fenton oxidation on soil organic matter and its sorption and desorption of pyrene[J].Journal of Hazardous Materials,2007,144(1/2):164-170.
    [25]
    SUN M M,YE M,HU F,et al.Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHS under denitrifying conditions in a red paddy soil[J].Journal of Hazardous Materials,2014,264:505-513.
    [26]
    白云星,周运超,周鑫伟,等.喀斯特土壤与喀斯特区域土壤关系的探讨:以贵州省普定县后寨河小流域为例[J].土壤,2020,52(2):414-420.
    [27]
    BIELSKÁL,ŠKULCOVÁL,NEUWIRTHOVÁN,et al.Sorption,bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils[J].Science of the Total Environment,2018,624:78-86.
    [28]
    LAMICHHANE S,BAL KRISHNA K C,SARUKKALIGE R.Polycyclic aromatic hydrocarbons (PAHS) removal by sorption:a review[J].Chemosphere,2016,148:336-353.
    [29]
    HAN L F,SUN K,JIN J,et al.Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter[J].Environmental Science&Technology,2014,48(19):11227-11234.
    [30]
    YANG K,XING B S.Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water[J].Environmental Pollution,2007,145(2):529-537.
    [31]
    WU W H,MIAO G F,YAN X X,et al.Correlations and prediction of adsorption capacity and affinity of aromatic compounds on activated carbons[J].Science of the Total Environment,2020,704:135457.
    [32]
    CHEN W,HOU L,LUO X L,et al.Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils[J].Environmental Pollution,2009,157(6):1894-1903.
    [33]
    ERIKSSON M,KA J O,MOHN W W.Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic Tundra soil[J].Applied and Environmental Microbiology,2001,67(11):5107-5112.
    [34]
    MA W L,LIU L Y,JIA H L,et al.PAHs in Chinese atmosphere part I:concentration,source and temperature dependence[J].Atmospheric Environment,2018,173:330-337.
    [35]
    DUAN L C,NAIDU R.Effect of ionic strength and index cation on the sorption of phenanthrene[J].Water,Air,&Soil Pollution,2013,224(12):1-17.
    [36]
    吴文伶,孙红文.菲在沉积物上的吸附-解吸研究[J].环境科学,2009,30(4):1133-1138.
    [37]
    PEARSON R G.The HSAB principle-more quantitative aspects[J].Inorganica Chimica Acta,1995,240(1/2):93-98.
    [38]
    BARNIER C,OUVRARD S,ROBIN C,et al.Desorption kinetics of PAHs from aged industrial soils for availability assessment[J].Science of the Total Environment,2014,470/471:639-645.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(3) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return