Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: WANG Ya-xin, LIU Jun, YI Hong-hong, TANG Xiao-long, WANG Si. RESEARCH PROGRESS OF DESULFURIZATION AND DENITRATION TECHNOLOGIES FOR SINTERING FLUE GAS IN IRON AND STEEL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 253-261. doi: 10.13205/j.hjgc.202209034

RESEARCH PROGRESS OF DESULFURIZATION AND DENITRATION TECHNOLOGIES FOR SINTERING FLUE GAS IN IRON AND STEEL INDUSTRY

doi: 10.13205/j.hjgc.202209034
  • Received Date: 2021-11-10
    Available Online: 2022-11-09
  • The iron and steel industry is a key basic industry in China, and a typical industry with high air pollutant emissions, including huge quantities of sulfur dioxide(SO2) and nitrogen oxides(NOx). With the implementation of ultra-low emission standards in the iron and steel industry, it is urgent to renovate the existing or build new advanced desulfurization and denitration facilities in the sintering process. Based on the introduction of the characteristics of the sintering flue gas and the changes in emission standards, this paper summarizes the application status of separate desulfurization technologies, separate denitrification technologies and simultaneous desulfurization and denitration technologies, as well as the research and development progress of simultaneous desulfurization and denitration technologies, and systematically looks forward to the future development prospects of these technologies. The results indicate that among the separate desulfurization and denitrification technologies, semi-dry desulfurization and low temperature selective catalytic reduction(SCR) denitration have a high potential for application. Meanwhile, the process combination of semi-dry desulfurization+bag dust-removal+SCR has the highest cleaning efficiency. Among the simultaneous desulfurization and denitrification technologies, oxidation method and activated coke method still need further improvement in efficiency and cost, and the simultaneous desulfurization and denitrification technologies in research have a promising potential for long-term development.
  • [1]
    GAO C K,GAO W G,SONG K H,et al.Spatial and temporal dynamics of air-pollutant emission inventory of steel industry in China:a bottom-up approach[J].Resources,Conservation & Recycling,2019,143:184-200.
    [2]
    WANG X Y,LEI Y,YAN L,et al.A unit-based emission inventory of SO2,NOx and PM for the Chinese iron and steel industry from 2010 to 2015[J].Science of the Total Environment,2019,676:18-30.
    [3]
    赵森林,冀留庆,李育杰,等.钢铁行业烧结2烟气脱硫产业化发展趋势[C]//第八届(2011)中国钢铁年会论文集,中国金属学会,2011:6.
    [4]
    王建华,邱明英,任乐,等.我国钢铁行业烟气脱硫脱硝工艺运用进展[C]//中国环境科学学会2019年科学技术年会——环境工程技术创新与应用分论坛论文集(四).中国环境科学学会环境工程分会:《环境工程》编辑部,2019:6.
    [5]
    赵雪,程茜,侯俊先.脱硫脱硝行业2017年发展综述[J].中国环保产业,2018(7):10-24.
    [6]
    汤铃,贾敏,伯鑫,等.中国钢铁行业排放清单及大气环境影响研究[J].中国环境科学,2020,40(4):1493-1506.
    [7]
    贺克斌.打赢蓝天保卫战需要加快钢铁行业超低排放改造[N].中国环境报,2019-05-06(3).
    [8]
    世界钢铁协会[EB/OL].https://worldsteel.org/wp-content/uploads/2021%E5%B9%B4%E4%B8%96%E7%95%8C%E9%92%A2%E9%93%81%E7%BB%9F%E8%AE%A1%E6%95%B0%E6%8D%AE.pdf.
    [9]
    张淑会,王宝勇,兰臣臣,等.球团矿化学成分控制现状及展望[J].钢铁,2020,55(8):19-26.
    [10]
    从海外经验,看“碳达峰”背景下粗钢原料发展路径[EB/OL].https://finance.sina.com.cn/money/future/roll/2021-04-26/doc-ikmxzfmk9050562.shtml.
    [11]
    赵莹.微波法处理烧结烟气中氮硫化物实验研究[D].唐山:华北理工大学,2019.
    [12]
    王睿.烧结烟气湿法脱硫废水处理及资源化利用探讨[J].工业安全与环保,2021,47(11):103-106.
    [13]
    吕扬,管闯,尹鹏,等.烧结机烟气湿法脱硫后烟羽消减机理及工艺[J].工程技术研究,2019,4(17):225-226

    ,238.
    [14]
    郭彩云,侯长江,孙宇佳,等.钢铁行业半干法脱硫副产物资源化利用[J].河北冶金,2021(12):72-74.
    [15]
    侯建勇,严芳,姜茜,等.烧结烟气CFB半干法脱硫塔技术研究[J].烧结球团,2021,46(6):27-33.
    [16]
    贾中帅,刘长安,王继平,等.包钢烧结烟气脱硫灰理化特性研究[J].当代化工研究,2021(21):33-35.
    [17]
    张承舟,刘大钧,邹世英,等.我国钢铁行业超低排放实施现状分析与建议[J].环境影响评价,2020,42(4):1-5.
    [18]
    YUN Y,ZHANG J Y,LI H L,et al.Simultaneous removal of SO2,NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J].Chemical Engineering Journal,2012,192:21-28.
    [19]
    HAO H,HUI H,SHOHRAT A,et al.Interaction among the simultaneous removal of SO2,NO,and Hg0 by electrochemical catalysis in K2S2O8[J].Fuel,2020,260:116323.
    [20]
    CUI L,LIU M Y,YUAN X L,et al.Environmental and economic impact assessment of three sintering flue gas treatment technologies in the iron and steel industry[J].Journal of Cleaner Production,2021,311:127703.
    [21]
    睢辉.烧结烟气脱硫脱硝工艺选择[J].山东工业技术,2021(4):96-99.
    [22]
    史磊.钢铁行业烧结烟气脱硝技术分析及对比[J].能源与节能,2020(3):69-71,103.
    [23]
    竹涛,伊能静,王礼锋,等.烧结烟气脱硫脱硝技术进展[J].河北冶金,2019(1):7-10.
    [24]
    钟婷婷.烧结烟气全国氧含量及京津冀PM、NOx、SO2排放特征研究[D].北京:北京科技大学,2020.
    [25]
    王轲轲.软锰矿干法烧结烟气脱硫研究[D].贵州:贵州大学,2015.
    [26]
    石峥,任晓芬,张子平,等.烧结工序烟气治理方法[J].山东农业大学学报(自然科学版),2020,51(1):168-173.
    [27]
    西门子奥钢联.MEROS-烧结厂废气干法净化新技术[C]//2007中国钢铁年会论文集.中国金属学会,2007:7.
    [28]
    ZHAO Y J,FENG J X,CHEN Y M,et al.Thermal process and NO emission reduction characteristics of a new-type coke oven regenerator coupled with SNCR process[J].Fuel,2021,305:121510.
    [29]
    JAKOV B,HRVOJE M,MILAN V,et al.Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications[J].Energy Conversion and Management,2016,125:59-69.
    [30]
    YAN J R,ZHOU F X,ZHOU Y,et al.Wet oxidation and absorption procedure for NOx removal[J].Environmental Technology & Innovation,2018,11.
    [31]
    WANG H Q,ZHUANG Z K,SUN C L,et al.Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process[J].Journal of Environmental Sciences,2016,41:51-58.
    [32]
    周建富.烧结烟气联合脱硝脱硫的实践应用研究[D].唐山:华北理工大学,2020.
    [33]
    蔡茂宇.烧结/球团烟气臭氧氧化结合SDA法硫硝协同控制技术研究[D].贵阳:贵州大学,2020.
    [34]
    CHENG G B,DUAN X L,QI X F,et al.Nitration of aromatic compounds with NO2/air catalyzed by sulfonic acid-functionalized ionic liquids[J].Catalysis Communications,2008,10(2):201-204.
    [35]
    LI Y,CHE D F,ZHAO H C,et al.Tributyl phosphate additive enhancing catalytic absorption of NO2 for simultaneous removal of SO2/NOx in wet desulfurization system[J].Journal of the Energy Institute,2020,93(2):474-481.
    [36]
    WANG B W,YAO S M,PENG Y P.Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption[J].Chinese Journal of Chemical Engineering,2020,28(9):2457-2466.
    [37]
    SHAO J M,MA Q,WANG Z H,et al.A superior liquid phase catalyst for enhanced absorption of NO2 together with SO2 after low temperature ozone oxidation for flue gas treatment[J].Fuel,2019,247:1-9.
    [38]
    LI Y,YANG C L,YAO M Y,et al.Research and engineering practice of catalytic absorption of NO2 by tetrabutylammonium hydrogen sulfate for simultaneous removal of SO2/NOx[J].Fuel,2021,283:118858.
    [39]
    MENG Z H,WANG C Y,WANG X R,et al.Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel Slag Slurry Combined With Ozone Oxidation[J].Fuel,2019,255:115760.
    [40]
    王新东,侯长江,田京雷.钢铁行业烟气多污染物协同控制技术应用实践[J].过程工程学报,2020,20(9):997-1007.
    [41]
    冶飞,李维浩.关于烧结烟气联合脱硫脱硝技术路线的探讨[J].新疆钢铁,2019(4):18-21.
    [42]
    ABDULRASHEED A A,JALIL A A,TRIWAHYONO S,et al.Ibrahim.Surface modification of activated carbon for adsorption of SO2 and NOx:a review of existing and emerging technologies[J].Renewable and Sustainable Energy Reviews,2018,94:1067-1085.
    [43]
    左嫣然,易红宏,唐晓龙,等.酸碱改性对活性焦烧结烟气脱硫性能的影响[J].环境工程学报,2015,9(7):3405-3410.
    [44]
    张云雷.活性焦烟气净化反应器脱硝内构件的模拟及优化[D].北京:煤炭科学研究总院,2020.
    [45]
    张威力,吴胜利,胡中杰.活性焦法烧结烟气脱硝率影响因素解析[J].钢铁,2020,55(5):109-115.
    [46]
    张威力,吴胜利,胡中杰.活性焦法烧结烟气脱硫率影响因素统计解析[J].钢铁研究学报,2020,32(4):281-288.
    [47]
    LI Y J,ZHANG X L,LIN H F,et al.The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J].Fuel,2020,275:117862.
    [48]
    LI Q Y,HOU Y Q,HAN X J,et al.Promotional effect of cyclic desulfurization and regeneration for selective catalytic reduction of NO by NH3 over activated carbon[J].Journal of Cleaner Production,2020,249:119392.
    [49]
    LI Y R,LIN Y T,WANG B,et al.Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J].Journal of Cleaner Production,2019,228:1391-1400.
    [50]
    LI J,ZHANG L Q,ZHAO X Q,et al.Insights into the effect of regeneration temperature on physicochemical properties and SO2 removal over powdered activated coke[J].Fuel,2021,288:119715.
    [51]
    ZUO Y R,YI H H,TANG X L.Metal-modified active coke for simultaneous removal of SO2 and NOx from sintering flue gas[J].Energy & Fuels,2014:377-383.
    [52]
    ZUO Y R,YI H H,TANG X L,et al.Study on active coke-based adsorbents for SO2 removal in flue gas[J].Journal of Chemical Technology Biotechnology,2014:1876-1885.
    [53]
    邵晶.微波放电对活性焦同时脱硫脱硝影响的试验研究[D].太原:太原理工大学,2020.
    [54]
    NIU J,ZHANG H R,LI L B,et al.Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature[J].Fuel,2021,293:120448.
    [55]
    YAN Y G,MAO Z J,LUO J J,et al.Simultaneous removal of SO2,NOx, and Hg0 by O3 oxidation integrated with bio-charcoal adsorption[J].Journal of Fuel Chemistry and Technology,2020,48(12):1452-1460.
    [56]
    LIAM J F,LI W,ZHANG Y K,et al.A superior Fe-Zr mixed oxide catalyst for the simultaneous reduction of NO and SO2 with CO[J].Applied Catalysis B:Environmental,2020,269:118822.
    [57]
    CHEN R,ZHANG T S,WANG J W,et al.Recent advances in simultaneous removal of SO2 and NOx from exhaust gases:removal process,mechanism and kinetics[J].Chemical Engineering Journal,2020:127588.
    [58]
    CUI S P,HAO R L,FU D.An integrated system of dielectric barrier discharge combined with wet electrostatic precipitator for simultaneous removal of NO and SO2:key factors assessments,products analysis and mechanism[J].Fuel,2018,221:12-20.
    [59]
    ANNA N,KYO-SEON K.Effects of TiO2 coating on zeolite particles for NO and SO2 removal by dielectric barrier discharge process[J].Catalysis Today,2013,211:90-95.
    [60]
    田恬,程茜,赵雪,等.2019年脱硫脱硝行业发展评述及展望[J].中国环保产业,2020(2):23-25,28.
    [61]
    常治铁.SDS+SCR工艺在焦炉烟气脱硫脱硝中的应用[J].中国冶金,2019,29(10):65-70.
    [62]
    李永光,安璐.焦炉烟气低温SCR脱硝催化剂的研究与开发[J].燃料与化工,2020,51(4):43-47.
    [63]
    GAO F Y,TANG X L,YI H H,et al.Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J].Chemical Engineering Journal,2017,317:20-31.
    [64]
    TANG X L,SHI Y R,GAO F Y,et al.Promotional role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance[J].Chemical Engineering Journal,2020,398:125619.
    [65]
    ZHANG J K,CHEN C Q,CHEN S,et al.Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane[J].Catalysis Science & Technology,2017,7(2):322-329.
    [66]
    REN M,LU P,LIU X R,et al.Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality[J].Applied Energy,2021,298:117209.
    [67]
    RAMSES S,ANNEMIE B.Plasma technology-a novel solution for CO2 conversion[J].Chemical Society Reviews,The Royal Society of Chemistry,2017,46(19):5805-5863.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (486) PDF downloads(21) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return