Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
Citation: HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035

RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION

doi: 10.13205/j.hjgc.202209035
  • Received Date: 2021-11-15
    Available Online: 2022-11-09
  • In-situ remediation of soil and groundwater is mainly realized through vertical remediation wells technology, but this technology has a series of problems. The horizontal remediation wells(HRWs) technique is an innovative in-situ soil/groundwater remediation technology at contaminated sites, which can fully overcome the shortcomings of vertical wells. It can be used to target and clean up the contaminants precisely by means of horizontal directional drilling collaborated with conventional methods, such as chemical oxidation/reduction, soil vapor extraction, groundwater pump and treat, etc. It is mainly used at sites where conventional vertical drilling or trenching would be undesirable or impractical, and is especially suitable for contaminated soil and groundwater remediation beneath surface obstructions and active facilities. At present, the research and application of HRWs technology have not been conducted widely in China. The research advances of HRWs were introduced in the aspects of principles and characteristics, advantages and limitations as well as the history and development trend.This new technology was applied and tested at a petroleum hydrocarbon contaminated site in N City, J Province. The results show that the implementation of this technology is not limited by the active surface facilities with little disturbance to the surrounding environment. It has a greater contact area with contamination. The overall concentration of petroleum hydrocarbon in groundwater reached the remediation target value and was reduced by 96.47%. The successful demonstration of this technique can provide a practical reference and new vision for the development of in-situ remediation technology in China.
  • [1]
    周小燕,林辉斌.污染场地调查现状存在的问题及对策研究[J].资源节约与环保,2019(4):119-120.
    [2]
    谷庆宝,张倩,卢军,等.我国土壤污染防治的重点与难点[J].环境保护,2018,46(1):14-18.
    [3]
    陈健鹏.生态文明建设目标责任体系及问责机制:演进历程、问题和改进方向[J].重庆理工大学学报(社会科学),2020,34(5):1-9.
    [4]
    王磊.我国土壤污染修复责任制度研究[D].石家庄:河北地质大学,2019.
    [5]
    邓红艳.某工厂厂区土壤铬污染及其微生物修复研究[D].重庆:重庆大学,2016.
    [6]
    杨丽琴,陆泗进,王红旗.污染土壤的物理化学修复技术研究进展[J].环境保护科学,2008,34(5):42-45.
    [7]
    蓝俊康.污染场地修复技术的种类[J].四川环境,2006,25(3):90-94

    ,100.
    [8]
    TAKC F M G,BARDOS P.Overview of soil and groundwater remediation[M]//Soil and Groundwater Remediation Technologies.CRC Press,2020.
    [9]
    罗程钟,易爱华,张增强,等.POPs污染场地修复技术筛选研究[J].环境工程学报,2008,2(4):569-573.
    [10]
    陈慧敏,仵彦卿.地下水污染修复技术的研究进展[J].净水技术,2010,29(6):5-8.
    [11]
    JAIN P K,GUPTA V K,GAUR R K,et al.Bioremediation of petroleum oil contaminated soil and water[J].Research Journal of Environmental Toxicology,2011,5(1):1-26.
    [12]
    张倩.浅议地下水污染治理技术方法及进展[J].干旱环境监测,2008,22(3):174-178.
    [13]
    LUBRECHT M D.Horizontal directional drilling:a green and sustainable technology for site remediation[J].Environmental Science & Technology,2012,46:2484-2489.
    [14]
    KUPPUSAMY S,PALANISAMI T,MEGHARAJ M,et al.In-situ remediation approaches for the management of contaminated sites:a comprehensive overview[J].Reviews of Environmental Contamination and Toxicology,2016,236:1-115.
    [15]
    SUTHERSAN S S,PAYNE F C.In situ remediation engineering[M].CRC Press,2004.
    [16]
    KREMBS F J,SIEGRIST R L,CRIMI M L,et al.ISCO for groundwater remediation:analysis of field applications and performance[J].Groundwater Monitoring & Remediation,2010,30(4):42-53.
    [17]
    张晶,张峰,马烈.多相抽提和原位化学氧化联合修复技术应用——某有机复合污染场地地下水修复工程案例[J].环境保护科学,2016,42(3):154-158.
    [18]
    杨乐巍,张晓斌,李书鹏,等.土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J].环境工程,2018,36(12):48-53.
    [19]
    LATON W R.New perspectives on horizontal to vertical well ratios for site cleanup[J].Remediation,2019,30:27-31.
    [20]
    张雅春.水平定向钻进技术在土壤环境治理中的应用研究[D].北京:中国地质大学,2010.
    [21]
    PLUMMER C R,NELSON J D,ZUMWALT G S.Horizontal and vertical well comparison for in situ air sparging[J].Groundwater Monitoring & Remediation,1997,17(1):91-96.
    [22]
    U.S.Department of Energy.Innovative Technology Summary Report-Horizontal wells:subsurface contaminants focus area[R],Washington DC:U.S.DOE,1998.
    [23]
    DENHAM M E,LOMBARD K H.A synopsis of environmental horizontal wells at the savannah river site[R/OL].(1994) [2021.4.8].https://inis.iaea.org/collection/NCLCollection Store/_Public/27/013/27013763.pdf?r=1&r=1.
    [24]
    BARDSLEY D S.HDD methods for water wells,environmental wells[J].National Driller,2014,12(9).
    [25]
    KOENIGSBERG S S,PIATT E R,ROBINSON L I.New perspectives in the use of horizontal wells for assessment and remediation[J].Remediation Journal,2018,28(4):45-50.
    [26]
    DIVINE C E,ROTH T,CRIMI M,et al.The horizontal reactive media treatment well (HRX well®) for passive in-situ remediation[J].Groundwater Monitoring & Remediation,2018,38(1):56-65.
    [27]
    冯俊生,张俏晨.土壤原位修复技术研究与应用进展[J].生态环境学报,2014,23(11):1861-1867.
    [28]
    van HEEST G.Horizontal wells for groundwater remediation:how a technology that revolutionized the oil industry is used to remediate groundwater[J].EM Magazine,2013(6):20-23.
    [29]
    U.S.Environmental Protection Agency.How to evaluate alternative cleanup technologies for underground storage tank sites:Horizontal remediation wells[R/OL].(2017-10) [2020-10-18].https://www.epa.gov/sites/default/files/2017-10/documents/tums-app-a-oct2017.pdf.
    [30]
    李山.水平定向钻进中的几个重要技术问题——兼谈《水平定向钻进管线铺设工程技术规范》[J].非开挖技术,2006,23(1):1-6.
    [31]
    王敏生,光新军.定向钻井技术新进展及发展趋势[J].石油机械,2015,43(7):12-18.
    [32]
    赵绍春.水平定向钻技术在中国的发展历程及未来发展方向[C]//中国国际管道大会,2013.
    [33]
    Directed Technologies Drilling,Inc.Horizontal environmental well design and installation handbook[R/OL].(2004-12) [2021-3-2].https://horizontaldrill.com/wp-content/uploads/2016/04/DTD_Horizontal_EnvWell_Handbook.pdf.
    [34]
    ROSANSKY S.NAVFAC Technical Report:Application of horizontal wells to enhance site remediation[R/OL].(2020-10) [2021-6-3].https://clu-in.org/download/techfocus/horizontal-wells/Horizontal-Well-Case-Studies-11_13_20_Final.pdf.
    [35]
    LUNDEGARD P D,CHAFFEE B,LABRECQUE D.Effective air delivery from a horizontal sparging well[J].Groundwater Monitoring & Remediation,2001,21(2):117-123.
    [36]
    BORTONE I,ERTO A,DI NARDO A,et al.Pump-and-treat configurations with vertical and horizontal wells to remediate an aquifer contaminated by hexavalent chromium[J].Journal of Contaminant Hydrology,2020,235(11):103725.
    [37]
    STEWARD D R,JIN W.Gaining and losing sections of horizontal wells[J].Water Resources Research,2001,37(11):2677-2685.
    [38]
    李社锋,王文坦,邵雁,等.活化过硫酸盐高级氧化技术的研究进展及工程应用[J].环境工程,2016,34(9):171-174.
    [39]
    吴昊,孙丽娜,王辉,等.活化过硫酸钠原位修复石油类污染土壤研究进展[J].环境化学,2015,33(11):2085-2095.
    [40]
    缪周伟.化学氧化法修复TPH污染土壤的效果比较及工艺研究[J].环境工程,2020,58(5):165-170.
  • Relative Articles

    [1]GU Yonggang, YU Lei, ZHANG Shuhan, MENG Qingyi. EVALUATION OF ENTROPY INCREASE INHIBITION EFFECT OF TREATMENT OF INFERIOR V-CLASS WATER BODIES IN TYPICAL RURAL RIVER COURSES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 128-134. doi: 10.13205/j.hjgc.202402015
    [2]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [5]LI Jingnan, WANG Qunhui, LIANG Baorui, WANG Wanqing, LIU Junjie. EFFECTS OF GARDEN WASTE ON EMISSION REDUCTION AND MICROBIAL COMMUNITY IN COASTAL SALINE SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 95-101. doi: 10.13205/j.hjgc.202401013
    [6]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [7]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [8]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [9]WANG Zhiqi, LI Jianguo, PENG Binbin, XIANG Wanli. DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 213-222. doi: 10.13205/j.hjgc.202310025
    [10]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]LIU Jie, GE Xiao, ZHAO Zhenyu. RESEARCH ON SPATIO-TEMPORAL EVOLUTION OF CARBON ARRANGEMENT IN NORTH CHINA CITIES AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 204-212,222. doi: 10.13205/j.hjgc.202310024
    [13]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [14]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [15]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [16]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [17]ZHANG Xing, QIAN Zhen-qing, ZHANG De-feng, ZHU Tao, YUAN Qian-cheng, YE Ze-fu. RESEARCH PROGRESS OF COOKING FUME EMISSION CHARACTERISTICS AND PURIFICATION TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 37-41,20. doi: 10.13205/j.hjgc.202001005
    [18]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [19]ZHANG Li, XIE Zi-xuan, CAO Li-bin, WU Qiong, CAI Bo-feng. DISCUSSION ON EVALUATION METHOD ON CARBON DIOXIDE EMISSIONS PEAKING FOR CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 1-5,43. doi: 10.13205/j.hjgc.202011001
    [20]LI Han, WANG Jian-long, FENG Cui-min, CAI Zhi-wen, HE Cun-gang, LIU Yan. MONITORING AND EVALUATION OF STORMWATER CONTROL EFFECT VIA LOW-IMPACT DEVELOPMENT IN RESIDENTIAL DISTRICTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 145-150. doi: 10.13205/j.hjgc.202004026
  • Cited by

    Periodical cited type(13)

    1. 赵大洲,武宇杰,叶成秀,付依玮,邵怡菲,任泽宇. 生物质吸附剂去除重金属离子的研究进展. 皮革与化工. 2025(01): 17-21 .
    2. 郑凯远,陈红,绳俊,蔡冬清,薛罡,曾可佳,于鑫,叶沁辉. 污水处理厂碳排放核算方法的标准研究与修正建议. 东华大学学报(自然科学版). 2024(01): 134-144 .
    3. 刘小明. 电炉炼钢中CO_2排放量监测及控制研究. 山西冶金. 2024(02): 94-96 .
    4. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 .
    5. 武成辉,周婧,马锦钰,霍冠峰. 非二氧化碳温室气体排放量化方法研究进展. 广东化工. 2024(20): 103-106 .
    6. 宣干,唐柏杨,李雨婷,张熙彤,刘伟京,操家顺,罗景阳,冯骞. 城镇污水收集系统直接碳排放的监测方法研究进展. 环境工程. 2024(11): 13-21 . 本站查看
    7. 娄明月,刘广兵,刘伟京,孟溪,施梦琦,郭明辰. 基于厌氧碳循环理论的污水收集典型单元碳排放核算方法研究. 环境工程. 2024(11): 61-71 . 本站查看
    8. 唐柏杨,宣干,杨诗瑶,刘伟京,薛朝霞,操家顺,罗景阳,冯骞. 重新审视化粪池的温室效应:回顾与展望. 环境工程. 2023(07): 14-21 . 本站查看
    9. 姚怡帆,荆玉姝,王丽艳,刘长青. 基于集成模型的污水处理厂出水总氮预测方法. 工业水处理. 2023(09): 187-194 .
    10. 佟素娟,薛同来. 基于PSO-ACO算法的再生水厂出水总磷预测模型研究. 现代盐化工. 2023(04): 35-37 .
    11. 欧阳伊雯,庞蘅洺,叶红丽,庞惠月,王照晴,高小峰,陆嘉麒. 重庆市城镇污水处理系统的碳排放特征及减污降碳措施建议. 环境工程学报. 2023(09): 2841-2847 .
    12. 张芳. 基于水质+水位检测的城镇排水管网排查重点研究. 工程技术研究. 2022(16): 148-150 .
    13. 孙锐,陈菊香. 基于AHP-FCE模型的污水处理厂运营管理综合评价与优化——以克拉玛依市A污水处理厂为例. 工程技术研究. 2022(18): 201-204+208 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 78.7 %META: 78.7 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.9 %其他: 14.9 %其他: 0.8 %其他: 0.8 %Central District: 0.4 %Central District: 0.4 %Perth Amboy: 1.2 %Perth Amboy: 1.2 %[]: 0.2 %[]: 0.2 %上海: 4.8 %上海: 4.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.2 %临汾: 0.2 %乌兰察布: 0.2 %乌兰察布: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊春: 0.2 %伊春: 0.2 %保定: 0.4 %保定: 0.4 %六安: 0.2 %六安: 0.2 %北京: 6.0 %北京: 6.0 %南京: 1.6 %南京: 1.6 %南昌: 0.2 %南昌: 0.2 %合肥: 0.2 %合肥: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %四平: 0.4 %四平: 0.4 %天津: 1.4 %天津: 1.4 %宁波: 0.4 %宁波: 0.4 %宣城: 1.0 %宣城: 1.0 %宿州: 0.4 %宿州: 0.4 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.2 %广州: 1.2 %庆阳: 0.2 %庆阳: 0.2 %张家口: 1.4 %张家口: 1.4 %成都: 1.7 %成都: 1.7 %扬州: 0.4 %扬州: 0.4 %昆明: 1.4 %昆明: 1.4 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %松原: 0.6 %松原: 0.6 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.6 %武汉: 0.6 %泰安: 0.2 %泰安: 0.2 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %深圳: 2.3 %深圳: 2.3 %温州: 0.4 %温州: 0.4 %湖州: 0.6 %湖州: 0.6 %漯河: 0.6 %漯河: 0.6 %濮阳: 0.2 %濮阳: 0.2 %白银: 0.2 %白银: 0.2 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 28.5 %芒廷维尤: 28.5 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.4 %苏州: 0.4 %西宁: 12.0 %西宁: 12.0 %西安: 0.2 %西安: 0.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %郑州: 0.4 %郑州: 0.4 %长春: 0.2 %长春: 0.2 %长沙: 1.2 %长沙: 1.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.6 %香港: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他Central DistrictPerth Amboy[]上海东莞临汾乌兰察布乌鲁木齐伊春保定六安北京南京南昌合肥哈尔滨四平天津宁波宣城宿州常州常德广州庆阳张家口成都扬州昆明晋城朝阳杭州松原格兰特县武汉泰安济南济源深圳温州湖州漯河濮阳白银石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义郑州长春长沙青岛香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (324) PDF downloads(22) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return