Citation: | LI Xixi, FENG Junxiao. RESEARCH PROGRESS ON PYROLYSIS KINETICS OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 215-223. doi: 10.13205/j.hjgc.202210028 |
[1] |
ROBERTS A F. A review of kinetics data for the pyrolysis of wood and related substances[J]. Combustion and Flame, 1970, 2(14):261-272.
|
[2] |
LIN K, WANG H P, LIU S H, et al. Pyrolysis kinetics of refuse-derived fuel[J]. Fuel Processing Technology, 1999, 60:103-110.
|
[3] |
TOKMURZIN D, KUSPANGALIYEVA B, AIMBETOV B, et al. Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends[J]. Energy, 2020, 191:116562.
|
[4] |
DING K, XIONG Q G, ZHONG Z P, et al. CFD simulation of combustible solid waste pyrolysis in a fluidized bed reactor[J]. Powder Technology, 2020, 362:177-187.
|
[5] |
COATS A W, REDFERN J. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201:68-69.
|
[6] |
KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57(4):217-221.
|
[7] |
KISSINGER E H. Reaction Kinetics in Differential Thermal Analysis[J]. 1957, 29:1702-1706.
|
[8] |
FLYNN WALL J H A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Polymer Letters, 1966, 4:323-328.
|
[9] |
STARINK J M. A new method for the derivation of activation energies from experiments performed at constant heating rate[J]. Thermochimica Acta, 1996, 288(1/2):97-104.
|
[10] |
DOYLE C D. Series approximations to the equation of thermogravimetric data[J]. Nature, 1965, 207:290-291.
|
[11] |
TANG W J, LIU Y W, ZHANG H, et al. New approximate formula for Arrhenius temperature integral[J]. Thermochimica Acta, 2003, 408(1):39-43.
|
[12] |
SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis, 1977, 11:445-447.
|
[13] |
FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic[J]. Journal of Polymer Science Part C:Polymer Symposia, 1964, 1(6):183-195.
|
[14] |
GUAN Y P, LIU C Q, PENG Q F, et al. Pyrolysis kinetics behavior of solid leather wastes[J]. Waste Management, 2019, 100:122-127.
|
[15] |
NISAR J, ALI G, SHAH A, et al. Fuel production from waste polystyrene via pyrolysis:kinetics and products distribution[J]. Waste Management, 2019, 88:236-247.
|
[16] |
VAMVUKA D, KAKARAS E, KASTANAKI E, et al. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[J]. Fuel, 2003, 82(15):1949-1960.
|
[17] |
ROSTAMI A A, HAJALIGOL M R, WRENN S E. A biomass pyrolysis sub-model for CFD applications[J]. Fuel, 2004, 83(11):1519-1525.
|
[18] |
CAI J M, WU W X, LIU R H. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2014, 36:236-246.
|
[19] |
SUUBERG E M. Approximate solution technique for non-isothermal, Gaussian distributed activation-energy models[J]. Combust Flame, 1983, 50(24):3-6.
|
[20] |
DU Z Y, SAROFIM A F, LONGWELL J P. Activation-energy distribution in temperature-programmed desorption-modeling and application to the soot-oxygen system[J]. Energy & Fuels, 1990, 4:296-302.
|
[21] |
DONSKOI E, MCELWAIN D L S. Optimization of coal pyrolysis modeling[J]. Combustion and Flame. 2000, 122(3):359-367.
|
[22] |
FERNANDEZ A, SAFFE A, PEREYRA R, et al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis[J]. Applied Thermal Engineering, 2016, 106:1157-1164.
|
[23] |
HU D H, CHEN M Q, HUANG Y W, et al. Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes[J]. Thermochimica Acta, 2020, 688:178604.
|
[24] |
王景巍,张曼玲,薛伟. 李子和梨树枝条的热解特性及动力学分析[J]. 消防科学与技术, 2019, 38(3):341-344.
|
[25] |
TIAN B, WANG X R, ZHAO W Y, et al. Pyrolysis behaviors, kinetics and gaseous product evolutions of two typical biomass wastes[J]. Catalysis Today, 2021,374:77-85.
|
[26] |
NG Q H, CHIN B L F, YUSUP S, et al. Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM)[J]. Applied Thermal Engineering, 2018, 138:336-345.
|
[27] |
CHEN L, WANG S Z, MENG H Y et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111:834-846.
|
[28] |
LIU G C, LIAO Y F, GUO S D, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process[J]. Applied Thermal Engineering, 2016, 98:400-408.
|
[29] |
CHHABRA V, BHATTACHARYA S, SHASTRI Y. Pyrolysis of mixed municipal solid waste:characterisation, interaction effect and kinetic modelling using the thermogravimetric approach[J]. Waste Management, 2019, 90:152-167.
|
[30] |
TOKMURZIN D, KUSPANGALIYEVA B, AIMBETOV B, et al. Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends[J]. Energy, 2020, 191:116562.
|
[31] |
LIU H R, CHEN B, WANG C J. Pyrolysis kinetics study of biomass waste using Shuffled Complex Evolution algorithm[J]. Fuel Processing Technology, 2020, 208:106509.
|
[32] |
TANG F F, YU Z S, LI Y, et al. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris[J]. Bioresource Technology, 2020, 299:122636.
|
[33] |
HAMMAD SIDDIQI U K S B. A synergistic study of reaction kinetics and heat transfer with multicomponentmodelling approach for the pyrolysis of biomass waste[J]. Energy, 2020, 204:117933.
|
[34] |
MENARES T, HERRERA J, ROMERO R, et al. Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime[J]. Waste Management, 2020, 102:21-29.
|
[35] |
CHEN R J, ZHANG J H, LUN L Y, et al. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes:thermal behavior, gas formation, and kinetics[J]. Bioresource Technology, 2019, 292:121970.
|
[36] |
BACH Q V, CHEN W H, ENG C F, et al. Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes[J]. Fuel, 2019, 251:118-125.
|
[37] |
WANG L Z, CHAI M Y, LIU R H, et al. Synergetic effects during co-pyrolysis of biomass and waste tire:a study on product distribution and reaction kinetics[J]. Bioresource Technology, 2018, 268:363-370.
|
[38] |
LIU G C, LIAO Y F, GUO S D, et al. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process[J]. Applied Thermal Engineering, 2016, 98:400-408.
|
[39] |
HU D H, CHEN M Q, HUANG Y W, et al. Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes[J]. Thermochimica Acta, 2020, 688:178604.
|
[40] |
SALVILLA J N V, OFRASIO B I G, ROLLON A P, et al. Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production[J]. Applied Energy, 2020, 279:115668.
|
[41] |
LIU J X, HUANG S M, CHEN K, et al. Preparation of biochar from food waste digestate:pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302:122841.
|
[42] |
陈泽宇,邢献军,李永玲,等. 城市生活垃圾与生物质成型燃料混合热解特性及动力学研究[J]. 太阳能学报, 2020, 41(10):340-346.
|
[43] |
谢奕标. 废旧电路板热解动力学及产物分析[J]. 环境工程技术学报, 2020, 10(2):303-309.
|
[44] |
高金锴,李健,汪宁,等. K2CO3对秸秆类生物质热解气相产物析出特性及动力学研究[J]. 中国电机工程学报, 2020, 40(4):1266-1273.
|
[45] |
孙肖东,徐艳英,吕超,等. 典型室内装修壁纸的热解特性和动力学研究[J]. 消防科学与技术, 2019, 38(1):11-14.
|
[46] |
张明振,原琪,黄冬梅,等. 典型纺织品热稳定性及热解动力学研究[J]. 中国科技论文, 2018, 13(18):2117-2123.
|
[47] |
张瑜,袁树杰. 家电塑料外壳的热解特性与动力学分析[J]. 消防科学与技术, 2018, 37(7):874-878.
|
[48] |
ÖZSIN G, PVTVN A E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR[J]. Waste Management, 2017, 64:315-326.
|
[49] |
LI X W, MEI Q Q, DAI X H, et al. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model[J]. Bioresource Technology, 2017, 227:297-307.
|
[50] |
VUPPALADADIYAM A K, ANTUNES E, SANCHEZ P B, et al. Influence of microalgae on synergism during co-pyrolysis with organic waste biomass:a thermogravimetric and kinetic analysis[J]. Renewable Energy, 2021, 167:42-55.
|
[51] |
MISHRA R K, MOHANTY K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential[J]. Bioresource Technology, 2020, 311:123480.
|
[52] |
FANG S W, LIN Y S, LIN Y, et al. Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge[J]. Energy, 2020, 190:116310.
|
[53] |
ZHANG X S, LEI H W, ZHU L, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220:233-238.
|
[54] |
WANG S Q, LIN X N, LI Z H, et al. Thermal and kinetic behaviors of corn stover and polyethylene in catalytic co-pyrolysis[J]. Bio-resources, 2018, 13:4102-4117.
|
[55] |
李丽洁,牛文娟,孟海波,等. 生物炭对向日葵秸秆热解特性及气体产物影响[J]. 农业工程学报, 2020, 36(4):227-233.
|
[56] |
马大朝,高伟康,孙翔,等. 稻壳与聚氯乙烯共热解的特性及动力学[J]. 环境工程, 2020, 38(1):135-140.
|
[57] |
吴凯,朱锦娇,朱跃钊,等. 废轮胎与生物质共热解特性研究[J]. 林产化学与工业, 2018, 38(5):53-60.
|
[58] |
郭慧敏,李翔宇,王海彦,等. 纤维素和聚丙烯共催化热解热重分析及动力学研究[J]. 太阳能学报, 2017, 38(10):2705-2711.
|
[59] |
FERNANDEZ A, SAFFE A, PEREYRA R, et al. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis[J]. Applied Thermal Engineering, 2016, 106:1157-1164.
|