Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004
Citation: WEN Hao, YAN Yuting, ZHONG Jiewen, ZHANG Haowen, YIN Hongwei, TIAN Siyu. EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 26-31. doi: 10.13205/j.hjgc.202211004

EFFECT OF BUOY-BEAD MATERIAL ON CHLORELLA VULGARIS HARVESTING PERFORMANCE DURING FLOTATION

doi: 10.13205/j.hjgc.202211004
  • Received Date: 2021-07-26
    Available Online: 2023-03-24
  • Buoy-bead flotation is a new microalgae harvesting method at present. The bead material has an important effect on harvesting efficiency. In order to achieve a high-efficiency bead material and mechanism during flotation, the study chose Chlorella vulgaris as the flotation microalgae and sodium borosilicate, hollow glass, fly ash and latex as the bead material. The experimental results showed that the harvesting efficiency of sodium borosilicate could achieve 63.24% without flotation reagent. The sodium silicate borate material could achieve high harvesting efficiency, because there was a secondary minimum at 16.6 nm during adhesion with microalgae. Sodium silicate had a strong hydrophobicity, which was easy to adhere to Chlorella vulgaris. Sodium silicate also had high surface roughness, which provided more binding sites. The two reasons were also important factors of high Chlorella vulgaris harvesting efficiency
  • [1]
    CHEN H, WANG J, ZHENG Y, et al. Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation[J]. Applied Energy, 2018, 211(FEB.1):296-305.
    [2]
    冯思然,朱顺妮,王忠铭.微藻污水处理研究进展[J].环境工程,2019,37(4):57-62

    ,6.
    [3]
    MANIRAFASHA E, NDIKUBWIMANA T, ZENG X H, et al. Phycobiliprotein:potential microalgae derived pharmaceutical and biological reagent[J]. Biochemical Engineering Journal, 2016,109:282-296.
    [4]
    IQBAL H. High-value compounds from microalgae with industrial exploitability:a review[J]. Frontiers in Bioscience (Scholar Edition), 2017, 9(3):319-342.
    [5]
    MARRONE B L, LACEY R E, ANDERSON D B, et al. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts[J]. Algal Research, 2018,33:470-485.
    [6]
    HATTAB M A. Microalgae harvesting methods for industrial production of biodiesel:critical review and comparative analysis[J]. Journal of Fundamentals of Renewable Energy and Applications, 2015, 5(2):100154.
    [7]
    魏婕,王若男,蒋毓婷,等.微纳气浮法用于油墨废水处理实验[J].环境工程,2020,38(12):13-18

    ,85.
    [8]
    ZHAO Y, LI Y P, HUANG J, et al. Rebound and attachment involving single bubble and particle in the separation of plastics by froth flotation[J]. Separation & Purification Technology, 2015, 144:123-132.
    [9]
    KEIM P, LUERWEG M, AIVASIDIS A, et al. Development in fluidized bed reactor design for waste water treatment using SIRAN®-spheres for microbial colonization[C]//Dechema Biotechnology Conferences Lectures Held at Dechema Meeting of Biotechnologists, 1990.
    [10]
    SUMANT K,NARAYAN C G, KAZMI A A. Ballasted sand flocculation for water, wastewater and CSO treatment[J]. Environmental Technology Reviews, 2016, 5(1):57-67.
    [11]
    MASSCHELEIN W J. Unit processes in drinking water treatment[J]. Environmental Science & Pollution Control, 1992, 2005(4):6-10.
    [12]
    邹小彤,徐开伟,文豪,等. 能源微藻的无泡采收新方法及其性能[J]. 过程工程学报, 2018, 2(10):872-878.
    [13]
    TOH P Y, NG B W, AHMAD A L,et al. The role of particle-to-cell interactions in dictating nanoparticle aided magnetophoretic separation of microalgal cells[J]. Nanoscale, 2014, 6(21):12838-12848.
    [14]
    高静思,朱佳,董文艺.光照对我国常见藻类的影响机制及其应用[J].环境工程,2019,37(5):111-116.
    [15]
    WEN H, ZOU X T, XU K W, et al. Buoy-bead flotation application for the harvesting of microalgae and mechanistic analysis of significant factors[J]. Bioprocess and biosystems engineering, 2019, 42(3):391-400.
    [16]
    ROLF B, VAN D M H C, BUSSCHER H J. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study[J]. Fems Microbiology Reviews, 2010,2:179-230.
    [17]
    OZKAN A, BERBEROGLU H. Physico-chemical surface properties of microalgae[J]. Colloids & Surfaces B Biointerfaces, 2013, 112:287-293.
    [18]
    GIRARDI F, MAGGINI S, VOLPE C D, et al. Hybrid organic-inorganic materials on paper:surface and thermo-mechanical properties[J]. Journal of Sol-Gel Science and Technology, 2011, 60(3):315-323.
    [19]
    OJANIEMI U, RIIHIMÄKI M, MANNINEN M, et al. Wall function model for particulate fouling applying XDLVO theory[J]. Chemical Engineering Science, 2012, 84:57-69.
    [20]
    HAO W, LI Y P, ZHOU S, et al. Surface characteristics of microalgae and their effects on harvesting performance by air flotation[J]. Int J Agric & Biol Eng, 2017, 10(1):125-133.
    [21]
    COSTA L, CARRETERO-GENEVRIER A, FERRAIN E, et al. Quantitative mapping of free-standing lipid membranes on nano-porous mica substrates[J]. bioRxiv, 2018,9(3):40-72.
    [22]
    OMETTO F, POZZA C, WHITTON R, et al. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture[J]. Water Research 2014, 53(15):168-179.
    [23]
    曹秀芹,柳婷,江坤,等.低温热水解处理对污泥流变特性的影响[J].环境工程,2019,37(12):104-108.
  • Relative Articles

    [1]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [2]ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002
    [3]YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022
    [4]LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016
    [5]HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
    [6]SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
    [7]DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
    [8]WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028
    [9]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [10]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [11]HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
    [12]LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022
    [13]LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027
    [14]GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023
    [15]SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
    [16]BAI Xiu-jia, ZHANG Hong-yu, GU Jun, ZHANG Qi, WANG Ji-hong. PHYSICO-CHEMICAL PROPERTIES AND RESOURCE UTILIZATION OF STALE REFUSE IN LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 116-120,124. doi: 10.13205/j.hjgc.202102018
    [17]LIU Hang-yi, YAN Bei-bei, LIN Fa-wei, WANG Yuan, WANG Xu-tong, CHEN Guan-yi. COMPARATIVE ANALYSIS OF TWO KINDS OF FOOD WASTE RECYCLING SCHEMES FROM THE PERSPECTIVE OF LCA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 169-175. doi: 10.13205/j.hjgc.202109024
    [18]ZHU Xiao-yan, CHEN Ting, ZHAO Ying-ying, QIU Xiao-peng, YIN Jun, FENG Hua-jun, ZHANG Jin-feng. INFLUENCING FACTORS OF THE SCALE OF FOOD WASTE TREATMENT IN CHINA: STATISTICAL ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 172-177,53. doi: 10.13205/j.hjgc.202103024
    [19]ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017
    [20]SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007
  • Cited by

    Periodical cited type(5)

    1. 薛鲜丽,刘子睦,李娜,郭瑞,王德培. 高效降解高盐高油餐厨垃圾微生物的筛选与应用. 食品与发酵工业. 2023(07): 73-79 .
    2. 樊玲嘉,彭鑫,陈硕夫,李慧,刘艳,张嘉超,张立华,黄红丽. 高效降解厨余垃圾复合菌剂的构建及应用. 湖南农业科学. 2023(03): 61-66 .
    3. 樊玲嘉,彭鑫,陈硕夫,李慧,刘艳,张嘉超,张立华,黄红丽. 高效降解厨余垃圾复合菌剂的构建及应用(英文). Agricultural Science & Technology. 2023(03): 29-38 .
    4. 巩光禄,赵铎,郭鹏博,张方政,张洪奇,申贵男,晏磊,邱财生,邱化蛟,王伟东. 微生物菌剂对玉米秸秆和餐厨垃圾混合好氧堆肥的影响. 黑龙江八一农垦大学学报. 2022(05): 92-98 .
    5. 李亚林,刘蕾,关明玥,孙猛,李柳婷,毛瑞月,何海洋. 纳米CaO_2激发餐厨垃圾碳组分合成水凝胶及溶胀性能分析. 化工进展. 2022(11): 6120-6129 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 80.9 %META: 80.9 %PDF: 6.8 %PDF: 6.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.4 %其他: 0.4 %China: 3.8 %China: 3.8 %[]: 1.3 %[]: 1.3 %上海: 2.1 %上海: 2.1 %临汾: 0.4 %临汾: 0.4 %丽水: 0.8 %丽水: 0.8 %佛山: 0.4 %佛山: 0.4 %北京: 4.7 %北京: 4.7 %十堰: 0.4 %十堰: 0.4 %南京: 2.5 %南京: 2.5 %南通: 0.8 %南通: 0.8 %台州: 2.1 %台州: 2.1 %合肥: 0.4 %合肥: 0.4 %呼伦贝尔: 0.8 %呼伦贝尔: 0.8 %天津: 1.3 %天津: 1.3 %宜昌: 3.4 %宜昌: 3.4 %宣城: 0.4 %宣城: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %廊坊: 2.5 %廊坊: 2.5 %成都: 1.3 %成都: 1.3 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济源: 0.8 %济源: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 0.4 %漯河: 0.4 %潍坊: 0.4 %潍坊: 0.4 %濮阳: 0.4 %濮阳: 0.4 %福州: 0.4 %福州: 0.4 %美国伊利诺斯芝加哥: 0.4 %美国伊利诺斯芝加哥: 0.4 %芒廷维尤: 27.1 %芒廷维尤: 27.1 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.4 %苏州: 0.4 %衢州: 1.7 %衢州: 1.7 %西宁: 3.8 %西宁: 3.8 %贵阳: 2.5 %贵阳: 2.5 %运城: 4.2 %运城: 4.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.1 %郑州: 2.1 %重庆: 0.8 %重庆: 0.8 %铁岭: 0.4 %铁岭: 0.4 %银川: 0.4 %银川: 0.4 %长沙: 1.7 %长沙: 1.7 %长治: 0.4 %长治: 0.4 %黄石: 0.4 %黄石: 0.4 %龙岩: 0.4 %龙岩: 0.4 %其他其他China[]上海临汾丽水佛山北京十堰南京南通台州合肥呼伦贝尔天津宜昌宣城常德广州廊坊成都昆明晋城朝阳杭州武汉沈阳济源湖州漯河潍坊濮阳福州美国伊利诺斯芝加哥芒廷维尤芜湖芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭银川长沙长治黄石龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (172) PDF downloads(3) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return