Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Yu-tong, ZHANG Yun, HOU Hao-chen, GAO Qiu-feng, XU Xiao-zhu. LIFE CYCLE ASSESSMENT OF HIGH PURITY MAGNESIUM PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 187-191. doi: 10.13205/j.hjgc.202106028
Citation: WANG Yiming, DING Lu, XU Jiaying, SHI Lei, LIU Yifan, LIANG Wenbo, YANG Xiaoli. CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 54-60. doi: 10.13205/j.hjgc.202211008

CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT

doi: 10.13205/j.hjgc.202211008
  • Received Date: 2022-01-22
    Available Online: 2023-03-24
  • The accumulation of nitrogen and phosphorus elements in rural river sediments in China is serious, and the existing physical and chemical remediation technology has some problems, such as incomplete removal of pollutants and easy destruction of the aquatic ecosystem. The adoption of biological ecological remediation technology can not only inhibit the release of sediment pollution, but also restore the aquatic ecosystem and strengthen the self-purification function of water bodies. In this paper, a sediment-water interface micro-ecosystem with corn straw biochar immobilizing denitrification bacteria, Vallisneria natans and Elodea nuttallii-snail was constructed, and the removal effect of pollutants in sediment and overlying water, and the effect on the microbial community structure of sediment were investigated. The results showed that the composite micro-ecosystem could effectively remove nitrogen and phosphorus pollution from the sediment. After 62 days of operation, the removal efficiencies of TN and TP from the sediment were 77.40% and 54.98%, respectively. The sediment with severe pollution level of TN, TP, and organic matters could be restored to the level of mild, moderate and clean, respectively. At the same time, the micro-ecosystem had a good removal effect on nitrogen in overlying water, and the concentration of NH4+-N and TN in overlying water reached the class Ⅲ of Environmental Quality Standard for Surface Water. The construction of the micro-ecosystem improved the biodiversity of the river sediment system, and the relative abundance of Chloroflexi, which indicates the pollution of sediment, got decreased, while the relative abundance of Proteobacteria, which is capable of degrading pollutants, got increased.
  • [1]
    郭舒临. 水下生态系统构建在平原河网地区农村河道治理上的应用研究[D]. 杭州:浙江大学, 2019.
    [2]
    丁玉琴, 李大鹏, 张帅, 等. 镁改性芦苇生物炭控磷效果及其对水体修复[J]. 环境科学, 2020, 41(4):1692-1699.
    [3]
    ZHU Y Y, TANG W Z, JIN X, et al. Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes[J]. Science of the Total Environment, 2019, 646:93-104.
    [4]
    LI H X, LI Y X, XU Y, et al. Biochar phosphorus fertilizer effects on soil phosphorus availability[J]. Chemosphere, 2020, 244:125471.
    [5]
    李雨平, 姜莹莹, 刘宝明, 等. 过氧化钙(CaO2)联合生物炭对河道底泥的修复[J]. 环境科学, 2020, 41(8):3629-3636.
    [6]
    WANG L Z, LIU Q J, HU C W, et al. Phosphorus release during decomposition of the submerged macrophyte Potamogeton crispus[J]. Limnology, 2018, 19(3):355-366.
    [7]
    WALKER P D, WIJNHOVEN S, VELDE G V D. Macrophyte presence and growth form influence macroinvertebrate community structure[J]. Aquatic Botany, 2013, 104:80-87.
    [8]
    谭凯婷, 柳君侠, 王志红, 等. 沉水植物修复富营养化景观水体的研究进展[J]. 水处理技术, 2019, 45(6):15-18

    ,27.
    [9]
    张义, 刘子森, 张垚磊, 等. 多孔陶瓷滤球与沉水植物联合作用处理杭州西湖沉积物中的磷[J]. 环境工程学报, 2017, 11(7):4085-4090.
    [10]
    高帅强, 陈志远, 李锋民, 等. 沉水植物矮慈姑对重污染底泥的耐受及其中主要污染物的去除[J]. 环境科学学报, 2019, 39(7):2182-2189.
    [11]
    方坤. 生物炭对沉水植物系统构建及除污效能影响研究[D]. 北京:北京林业大学, 2020.
    [12]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
    [13]
    包宇飞, 胡明明, 王殿常, 等. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价[J]. 生态环境学报, 2021, 30(5):1005-1016.
    [14]
    杨海燕, 师路远, 卢少勇, 等. 不同覆盖材料对沉积物P、N释放的抑制效果[J]. 环境工程学报, 2015, 9(5):2084-2090.
    [15]
    HAO Z, XIN L, QI L, et al. Response of the submerged macrophytes Vallisneria natans to snails at different densities[J]. Ecotoxicology and Environmental Safety, 2019, 194:110373.
    [16]
    徐德福, 潘潜澄, 李映雪, 等. 生物炭对人工湿地植物根系形态特征及净化能力的影响[J]. 环境科学, 2018, 39(7):3187-3193.
    [17]
    许峥, 陈宇, 后志, 等. 不同纯生物菌剂对黑臭水体底泥的处理效果[J]. 中国给水排水, 2021, 37(1):102-108

    ,113.
    [18]
    王浩, 李正魁, 张一品, 等. 伊乐藻-高效脱氮微生物协同作用对污染水体氮素脱除机制的影响[J]. 环境科学, 2017, 38(11):4615-4622.
    [19]
    周楠楠, 王赢, 高顺峰, 等. 两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响[J]. 环境科学学报, 2021, 41(6):2222-2228.
    [20]
    WU Z H, WANG S R, LUO J. Transfer kinetics of phosphorus (P) in macrophyte rhizosphere and phytoremoval performance for lake sediments using DGT technique[J]. Journal of Hazardous Materials, 2018, 350:189-200.
    [21]
    MCLELLAN S L, NEWTON R J, VANDEWALLE J L, et al. Sewage reflects the distribution of human faecal Lachnospiraceae[J]. Environmental Microbiology, 2013, 15(8):2213-2227.
    [22]
    ZHANG J X, YANG Y Y, ZHAO L, et al. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes[J]. Applied Microbiology and Biotechnology, 2015, 99(7):3291-3302.
    [23]
    PANPAN M, HAIYAN P, WENRONG H, et al. How to increase microbial degradation in constructed wetlands:influencing factors and improvement measures[J]. Bioresource Technology, 2014, 157:316-326.
    [24]
    CLEARY D F R, POLÓNIA A R M, BECKING L E, et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system, Indonesia[J]. Marine Biodiversity, 2018, 48(4):1889-1901.
    [25]
    CAI W, LI Y, NIU L H, et al. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures[J]. Water Research, 2017, 123:495-504.
    [26]
    呼唤, 李丹蕾, 王玉莹, 等. 富砷湖滨湿地底泥优势细菌群落对风浪扰动的响应[J]. 应用与环境生物学报,2021, 27(6):1492-1499.
    [27]
    薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018, 38(2):719-728.
    [28]
    SHAO K Q, GAO G, QIN B Q, et al. Comparing sediment bacterial communities in the macrophyte-dominated and algae-dominated areas of eutrophic Lake Taihu, China[J]. NRC Research Press, 2011, 57(4):263-272.
  • Relative Articles

    [1]XU Changqing, LENG Linyuan, CHEN Zhengxia, JIA Haifeng. LIFE-CYCLE ENVIRONMENTAL AND ECONOMIC BENEFITS ASSESSMENT OF SOURCE CONTROL FACILITIES FOR SPONGE CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 144-149. doi: 10.13205/j.hjgc.202401019
    [2]QIU Qin. RESEARCH ON PREPARATION AND PERFORMANCE OF OPEN-CELL FOAM GLASS FOR SPONGE CITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 76-81. doi: 10.13205/j.hjgc.202312009
    [3]XIAO Chenxi, WANG Hongwu, DAI Xiaohu. A REVIEW OF CHARACTERISTICS AND CONTROL TECHNOLOGIES OF URBAN NON-POINT SOURCE POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 21-31. doi: 10.13205/j.hjgc.202312003
    [4]LIU Yong, NIE Hanbing, JIANG Cheng, ZHAN Cong, GUI Shuanglin, LI Tian. FIELD STUDY ON POLLUTION CONTROL EFFECT OF AN INNOVATIVE PERMEABLE PAVEMENT FOR STORMWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 70-75. doi: 10.13205/j.hjgc.202312008
    [5]JIE Chao, WANG Si-si, LÜ Bin. ENVIRONMENTAL IMPACT ANALYSIS OF PERMEABLE CEMENT CONCRETE PAVEMENT IN BEIJING BASED ON LIFE CYCLE ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 118-125. doi: 10.13205/j.hjgc.202209016
    [6]SUN Yao, LI Xiaojing, LI Junqi, WANG Wenliang, XUE Chonghua, WANG Jianlong, WANG Wenhai. DISCUSSION ON EXISTING PROBLEMS AND COUNTERMEASURES IN SPONGE CITY MONITORING AND EVALUATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 182-187. doi: 10.13205/j.hjgc.202204026
    [7]LI Zefeng, LI Meng, ZHANG Qian, LI Jiawei, ZHANG Yibo, LI Chengwei. ASSESSMENT OF NATURAL SPONGE WATER STORAGE MONITORING SYSTEM BASED ON OPTICAL FIBER SENSING TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 155-160. doi: 10.13205/j.hjgc.202201023
    [8]ZHANG Zi-yang, QI Hao, ZHANG Xiao-ran, LI Hai-yan. INFLUENCING MECHANISM OF PERMEABLE PAVEMENT TYPE ON REMOVAL EFFICIENCY OF HEAVY METALS FROM RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 41-46,88. doi: 10.13205/j.hjgc.202102007
    [9]XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027
    [10]ZHOU Zhi-cai. EFFECT ASSESSMENT OF SPONGE CITY CONSTRUCTION IN THE INTERNATIONAL ECO-BUSINESS DISTRICT IN SONGJIANG DISTRICT IN SHANGHAI BASED ON SWMM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 167-173. doi: 10.13205/j.hjgc.202008028
    [11]LEI Hong-ben, CHEN Hong-ying, SUN Hong-yang, ZHOU Zhi-cai, WANG Shi-jing. RESEARCH ON SPONGE CITY CONSTRUCTION PLANNING METHODS BASED ON TRANSMISSION THINKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 101-107. doi: 10.13205/j.hjgc.202004018
    [12]HAN Jing-chao. A DEMOSTRATION OF IMPLEMENTATION SCHEME OF SPONGE CITY PILOT AREA IN PLAIN RIVER NETWORK CITY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 119-123. doi: 10.13205/j.hjgc.202004021
    [13]REN Nan-qi, HUANG Hong, WANG Qiu-ru. PARADIGM OF SPONGE CITY CONSTRUCTION BASED ON REGIONAL CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 1-4. doi: 10.13205/j.hjgc.202004001
    [14]YANG Zheng, LI Jun-qi, WANG Wen-liang, CHE Wu, JU Chen-tao, ZHAO Yang. THE ADVANCED RECOGNITION OF LOW IMPACT DEVELOPMENT AND SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 10-15,38. doi: 10.13205/j.hjgc.202004003
    [15]YIN Ding-kun, CHEN Zheng-xia, YANG Meng-qi, JIA Hai-feng, XU Ke, WANG Teng-xu. EVALUATION OF RUNOFF CONTROL EFFECT IN SPONGE CITY CONSTRUCTION BASED ON ONLINE MONITORING+SIMULATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 151-157. doi: 10.13205/j.hjgc.202004027
    [16]SONG Jian-ying, WANG Jian-long, LI Yi-ming, GONG Yong-wei, DU Xiao-li. COMPARISON OF ARTIFICIAL WATER DIVERSION AND SPONGE CITY FOR GROUNDWATER RECHARGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 59-65. doi: 10.13205/j.hjgc.202004011
    [17]ZHANG Qiang, WANG Mei-rong, ZHANG Shu-han, GONG Ying-an, WANG Li-jing, CAO Xiu-qin. DEVELOPMENT OF AN AUTOMATIC SAMPLING TECHNOLOGY FOR URBAN RAINFALL RUNOFF QUALITY MONITORING AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 141-144,150. doi: 10.13205/j.hjgc.202004025
    [18]ZHANG Chen, LV Yong-peng, DENG Jing, CHEN Tao. STUDY ON SYSTEM AND TECHNOLOGIES FOR SYSTEMATIC AND FULL-FIELD PROMOTION OF SPONGE CITY CONSTRUCTION IN SHANGHAI[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 5-9,107. doi: 10.13205/j.hjgc.202004002
    [19]SUN Zhao-dong, SONG Hong-qing, XING Yi, LI Jie, LU Yu-chen, WANG Jiu-long. SIMULATION OF INFILTRATION AND HEAVY METAL POLLUTANTS MIGRATION FOR PERMEABLE BRICK PAVEMENT SYSTEM FOR SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 46-52,100. doi: 10.13205/j.hjgc.202004009
  • Cited by

    Periodical cited type(2)

    1. 李泽丰,李孟,张倩,李嘉炜,张一博,李程威. 基于光纤传感技术的天然海绵体监测系统评估. 环境工程. 2022(01): 155-160 . 本站查看
    2. 汪诗超. 光纤传感技术在径流污染监测中的应用研究. 铁道建筑技术. 2021(06): 178-181 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.5 %FULLTEXT: 7.5 %META: 88.5 %META: 88.5 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.5 %其他: 13.5 %Central District: 0.5 %Central District: 0.5 %[]: 0.5 %[]: 0.5 %东莞: 0.5 %东莞: 0.5 %临汾: 0.5 %临汾: 0.5 %佛山: 1.0 %佛山: 1.0 %保定: 0.5 %保定: 0.5 %北京: 7.0 %北京: 7.0 %南京: 0.5 %南京: 0.5 %台州: 0.5 %台州: 0.5 %嘉兴: 1.5 %嘉兴: 1.5 %天津: 0.5 %天津: 0.5 %宁波: 2.0 %宁波: 2.0 %常德: 0.5 %常德: 0.5 %广州: 1.5 %广州: 1.5 %张家口: 0.5 %张家口: 0.5 %成都: 0.5 %成都: 0.5 %扬州: 1.5 %扬州: 1.5 %昆明: 0.5 %昆明: 0.5 %晋城: 1.0 %晋城: 1.0 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.5 %杭州: 2.5 %武汉: 2.5 %武汉: 2.5 %泸州: 0.5 %泸州: 0.5 %济源: 1.0 %济源: 1.0 %深圳: 0.5 %深圳: 0.5 %漯河: 4.5 %漯河: 4.5 %芒廷维尤: 27.5 %芒廷维尤: 27.5 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 1.0 %苏州: 1.0 %西宁: 13.5 %西宁: 13.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 5.5 %运城: 5.5 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.0 %郑州: 1.0 %重庆: 0.5 %重庆: 0.5 %长沙: 1.0 %长沙: 1.0 %长治: 0.5 %长治: 0.5 %青岛: 0.5 %青岛: 0.5 %其他Central District[]东莞临汾佛山保定北京南京台州嘉兴天津宁波常德广州张家口成都扬州昆明晋城朝阳杭州武汉泸州济源深圳漯河芒廷维尤芝加哥苏州西宁贵阳运城遵义邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (331) PDF downloads(15) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return