Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
PEI Jianlu, WANG Kunjun, CHEN Xin, LI Xiaochen, LI Yuan, TIAN Lintao, LI Yongguo. NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 78-83. doi: 10.13205/j.hjgc.202211011
Citation: PEI Jianlu, WANG Kunjun, CHEN Xin, LI Xiaochen, LI Yuan, TIAN Lintao, LI Yongguo. NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 78-83. doi: 10.13205/j.hjgc.202211011

NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE

doi: 10.13205/j.hjgc.202211011
  • Received Date: 2021-12-14
    Available Online: 2023-03-24
  • [TETA] [L] ionic liquid was synthesized by the acid-base neutralization reaction of triethylenetetramine and L-lactic acid, and different mass fractions of ionic liquid were loaded into coconut shell activated carbon. The effects of ionic liquid impregnation on the microstructure and CO2 adsorption performance of coconut shell activated carbon were investigated by FTIR, XRD and automatic specific surface and pore size distribution analyzer. The results showed that the interaction between ionic liquid and activated carbon led to the fine crystallization of graphitized microcrystals, which adversely affected the structural stability of activated carbon, while the "plugging" filling of the pore structure of coconut shell activated carbon by ionic liquid led to the significant decrease of CO2 physical adsorption performance, and limited the increase of CO2 chemisorption performance of the composite, which was the root cause of the significant decrease in the total CO2 absorption performance of the composite. And ionic liquid in activated carbon showed a "step" filling behavior from small pore size to large pore size.
  • [1]
    VICENT-LUNA J M, GUTIERREZ-SEVILLANO J J, ANTA J A, et al. Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal-organic framework[J]. Journal of Physical Chemistry C, 2013, 117(40):20762-20768.
    [2]
    CHEN Y F, HU Z Q, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture:a computational investigation[J]. Journal of Physical Chemistry C, 2011, 115(44):21736-21742.
    [3]
    LI Z J, XIAO Y L, XUE W J, et al. Ionic liquid/metal-organic framework composites for H2S removal from natural gas:a computational exploration[J]. The Journal of Physical Chemistry C, 2015, 119(7):3674-3683.
    [4]
    银建中, 蔡佩, 周雪玲,等. 浸渍法制备负载化离子液体吸附剂及其表征[J]. 环境工程, 2017, 35(7):77-81.
    [5]
    SILVA F W M, MAGALHAES G M, JARDIM E O, et al. CO2 adsorption on ionic liquid-modified Cu-BTC:experimental and simulation study[J]. Adsorption Science Technology, 2015, 33(2):223-242.
    [6]
    SEZGINEL K B, KESKIN S, UZUN A. Tuning the gas separation performance of Cu-BTC by ionic liquid incorporation[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4):1139-1147.
    [7]
    MA J, YING Y P, GUO X Y, et al. Fabrication of mixed-matrix membrane containing metal organic framework composite with task specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2016, 4(19):7281-7288.
    [8]
    BAN Y J, LI Z J, LI Y S, et al. Confinement of ionic liquids in nanocages:tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie, 2015, 54(51):15483-15487.
    [9]
    KINIK F P, ALTINTAS C, BALCI V, et al.[BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8:elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces, 2016, 8(45):30992-31005.
    [10]
    KOYUTURK B, ALTINTAS C, KINIK F P, et al. Improving gas separation performance of ZIF-8 by[BMIM][BF4] incorporation:interactions and their consequences on performance[J]. Journal of Physical Chemistry C, 2017, 121(19):10370-10381.
    [11]
    XIA X X, HU G Q, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9):6022-6029.
    [12]
    HU P C, ZHANG R, LIU Z C, et al. Absorption performance and mechanism of CO2 in aqueous solutions of amine-based ionic liquids[J]. Energy & Fuels, 2015, 29(9):6019-6024.
    [13]
    ZHANG G J, ZHAO P Y, HAO L X, et al. Amine-modified SBA-15(P):a promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24:22-33.
    [14]
    TZIALLA O, KAKASIMOS G, ATHANASEKOU C, et al. Porous carbons from ionic liquid precursors confined within nanoporous silicas[J]. Microporous & Mesoporous Materials, 2016, 223:163-175.
    [15]
    SERAFIN J. Utilization of spent dregs for the production of activated carbon for CO2 adsorption[J]. Polish Journal of Chemical Technology, 2017, 19(2):44-50.
    [16]
    SUMRIT M, PHANSIRI M, WANWIMON P, et al. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(Ⅲ) adsorption from aqueous solution[J]. The Scientific World Journal, 2015, 2015(1):415961.
    [17]
    聂千. 活性炭孔结构对CO2和CH4吸附分离性能的影响[D]. 太原:太原理工大学, 2021.
    [18]
    WEI J W, MEI D J, LIN Z F, et al. Effects of TETA or TEPA loading on CO2 adsorption properties using pore-expanded KIT-6 as support[J]. Nano Brief Reports and Reviews, 2018,13(4):1850042.
    [19]
    ACHARYA J, SAHU J N, SAHOO B K, et al. Removal of chromium(Ⅵ) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride[J]. Chemical Engineering Journal, 2009, 150(1):25-39.
  • Relative Articles

    [1]LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019
    [2]YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023
    [3]LI Dou, WANG Yan, LIU Ruhai, SUN Haolin, YIN Pingping, ZHOU Xuyuan, MO Bing, LI Dongting. TEMPORAL VARIATION, SOURCE ANALYSIS AND ENVIRONMENTAL EFFECTS OF WATER-SOLUBLE IONS IN TSP IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 109-116,126. doi: 10.13205/j.hjgc.202308014
    [4]DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003
    [5]DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014
    [6]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
  • Cited by

    Periodical cited type(5)

    1. 蒋军成,胡政. 燃煤电站中锅炉燃烧烟气余热节能分析. 能源与环保. 2023(02): 173-179 .
    2. 李新强,赖志强,艾华,刘健,刘维鸽. 炼钢厂热泼渣废气白雾治理及水分回收系统. 重型机械. 2022(03): 32-35 .
    3. 吴剑恒. “双碳”目标下燃煤背压机组锅炉烟气余热深度利用研究. 电力学报. 2022(05): 384-421 .
    4. 梅欢. 直接换热烟气提水技术及其工程应用. 电力科技与环保. 2021(02): 16-21 .
    5. 刘舒巍,李红飞,舒斌,靳超然. 氟塑料的改性及其在换热器领域的应用研究进展. 化工管理. 2019(13): 103-104 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.8 %META: 82.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.7 %其他: 20.7 %其他: 1.1 %其他: 1.1 %东莞: 1.1 %东莞: 1.1 %北京: 3.4 %北京: 3.4 %台州: 5.7 %台州: 5.7 %呼和浩特: 2.3 %呼和浩特: 2.3 %扬州: 1.1 %扬州: 1.1 %杭州: 5.7 %杭州: 5.7 %湖州: 1.1 %湖州: 1.1 %漯河: 2.3 %漯河: 2.3 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 31.0 %芒廷维尤: 31.0 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %衢州: 1.1 %衢州: 1.1 %西宁: 16.1 %西宁: 16.1 %邯郸: 1.1 %邯郸: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 1.1 %长春: 1.1 %其他其他东莞北京台州呼和浩特扬州杭州湖州漯河漳州芒廷维尤芝加哥苏州衢州西宁邯郸重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (188) PDF downloads(2) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return