Citation: | PEI Jianlu, WANG Kunjun, CHEN Xin, LI Xiaochen, LI Yuan, TIAN Lintao, LI Yongguo. NEGATIVE SYNERGISTIC EFFECT OF AMINO IONIC LIQUID SUPPORTED ACTIVATED CARBON ON CO2 ADSORPTION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 78-83. doi: 10.13205/j.hjgc.202211011 |
[1] |
VICENT-LUNA J M, GUTIERREZ-SEVILLANO J J, ANTA J A, et al. Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal-organic framework[J]. Journal of Physical Chemistry C, 2013, 117(40):20762-20768.
|
[2] |
CHEN Y F, HU Z Q, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture:a computational investigation[J]. Journal of Physical Chemistry C, 2011, 115(44):21736-21742.
|
[3] |
LI Z J, XIAO Y L, XUE W J, et al. Ionic liquid/metal-organic framework composites for H2S removal from natural gas:a computational exploration[J]. The Journal of Physical Chemistry C, 2015, 119(7):3674-3683.
|
[4] |
银建中, 蔡佩, 周雪玲,等. 浸渍法制备负载化离子液体吸附剂及其表征[J]. 环境工程, 2017, 35(7):77-81.
|
[5] |
SILVA F W M, MAGALHAES G M, JARDIM E O, et al. CO2 adsorption on ionic liquid-modified Cu-BTC:experimental and simulation study[J]. Adsorption Science Technology, 2015, 33(2):223-242.
|
[6] |
SEZGINEL K B, KESKIN S, UZUN A. Tuning the gas separation performance of Cu-BTC by ionic liquid incorporation[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4):1139-1147.
|
[7] |
MA J, YING Y P, GUO X Y, et al. Fabrication of mixed-matrix membrane containing metal organic framework composite with task specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2016, 4(19):7281-7288.
|
[8] |
BAN Y J, LI Z J, LI Y S, et al. Confinement of ionic liquids in nanocages:tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie, 2015, 54(51):15483-15487.
|
[9] |
KINIK F P, ALTINTAS C, BALCI V, et al.[BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8:elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces, 2016, 8(45):30992-31005.
|
[10] |
KOYUTURK B, ALTINTAS C, KINIK F P, et al. Improving gas separation performance of ZIF-8 by[BMIM][BF4] incorporation:interactions and their consequences on performance[J]. Journal of Physical Chemistry C, 2017, 121(19):10370-10381.
|
[11] |
XIA X X, HU G Q, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials, 2019, 2(9):6022-6029.
|
[12] |
HU P C, ZHANG R, LIU Z C, et al. Absorption performance and mechanism of CO2 in aqueous solutions of amine-based ionic liquids[J]. Energy & Fuels, 2015, 29(9):6019-6024.
|
[13] |
ZHANG G J, ZHAO P Y, HAO L X, et al. Amine-modified SBA-15(P):a promising adsorbent for CO2 capture[J]. Journal of CO2 Utilization, 2018, 24:22-33.
|
[14] |
TZIALLA O, KAKASIMOS G, ATHANASEKOU C, et al. Porous carbons from ionic liquid precursors confined within nanoporous silicas[J]. Microporous & Mesoporous Materials, 2016, 223:163-175.
|
[15] |
SERAFIN J. Utilization of spent dregs for the production of activated carbon for CO2 adsorption[J]. Polish Journal of Chemical Technology, 2017, 19(2):44-50.
|
[16] |
SUMRIT M, PHANSIRI M, WANWIMON P, et al. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(Ⅲ) adsorption from aqueous solution[J]. The Scientific World Journal, 2015, 2015(1):415961.
|
[17] |
聂千. 活性炭孔结构对CO2和CH4吸附分离性能的影响[D]. 太原:太原理工大学, 2021.
|
[18] |
WEI J W, MEI D J, LIN Z F, et al. Effects of TETA or TEPA loading on CO2 adsorption properties using pore-expanded KIT-6 as support[J]. Nano Brief Reports and Reviews, 2018,13(4):1850042.
|
[19] |
ACHARYA J, SAHU J N, SAHOO B K, et al. Removal of chromium(Ⅵ) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride[J]. Chemical Engineering Journal, 2009, 150(1):25-39.
|
[1] | LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019 |
[2] | YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023 |
[3] | LI Dou, WANG Yan, LIU Ruhai, SUN Haolin, YIN Pingping, ZHOU Xuyuan, MO Bing, LI Dongting. TEMPORAL VARIATION, SOURCE ANALYSIS AND ENVIRONMENTAL EFFECTS OF WATER-SOLUBLE IONS IN TSP IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 109-116,126. doi: 10.13205/j.hjgc.202308014 |
[4] | DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003 |
[5] | DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014 |
[6] | ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017 |