Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LU Hong-sheng, GAO Yu-ting, ZHANG Xue, SUN Pei-ming, QIU Meng-meng. REMOVAL OF LEAD(Pb2+)FROM SOIL WITH MICROBIAL FUEL CELLS TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 236-240,184. doi: 10.13205/j.hjgc.202009038
Citation: LIU Wei, ZHONG Zhaoping, LIU Jin, ZHOU Yuguo, YU Shunyao. CFD-BASED FLOW FIELD OPTIMIZATION AND BAG LEAKAGE SIMULATION OF FABRIC BAGHOUSE FILTERS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 84-91,142. doi: 10.13205/j.hjgc.202211012

CFD-BASED FLOW FIELD OPTIMIZATION AND BAG LEAKAGE SIMULATION OF FABRIC BAGHOUSE FILTERS

doi: 10.13205/j.hjgc.202211012
  • Received Date: 2022-04-08
    Available Online: 2023-03-24
  • Based on computational fluid dynamics (CFD), the flow field simulation results of four schemes of a Suzhou environmental protection company's experimental downdraft fabric baghouse filter were analyzed and compared, in no deflector (scheme 1), straight plate with isotropic wing plate (scheme 2), straight plate with anisotropic wing plate (scheme 3), and vertical deflector with rectifier grille (scheme 4). The relative standard deviation of cross-sectional velocity at the first 100 mm of the bag inlet was selected as the evaluation index. The feasibility of differential pressure, flow velocity and concentration as the characteristic factors for leak detection was studied by numerical simulation of bag breakage in different areas. The results showed that the flow field distribution of scheme 4 was the most uniformed, better than schemes 2 and 3; scheme 2 had the smallest resistance increase, significantly lower than schemes 3 and 4. The study verified that the small-scale broken bag outlet concentration was linearly positively correlated with the broken bag area through simulation, and found that the pressure difference and flow rate, as the characteristic factors of leak detection, had no significant effect, and the concentration change was the most sensitive. Combined with the two important evaluation indicators of airflow distribution uniformity and resistance, the speed uniformity index of scheme 2 was 0.36, the speed uniformity index of scheme 4 was 0.2, the increase of resistance of scheme 2 was much smaller than that of scheme 4, and scheme 2 was more practical. The numerical simulation scheme provided in this paper could provide a certain reference for the distribution of the deflector plate of the lower intake bag filter and the selection of the monitoring sensor.
  • [1]
    姚群,宋七棣,陈志炜. 2020年袋式除尘行业发展评述和展望[J]. 中国环保产业,2021(3):19-22.
    [2]
    韩占忠,王敬,兰小平. 流体工程仿真计算实例与应用[M]. 北京:北京理工大学出版社,2005.
    [3]
    黄进,林翎,郦建国,等. 重点行业除尘器能效限定值及能效等级国家标准研究[J]. 标准科学,2017(6):77-81.
    [4]
    李勇,辛龙胜. 基于Fluent的脉冲袋式除尘器内气流流场的数值模拟[J]. 青岛科技大学学报(自然科学版),2010,31(2):177-181.
    [5]
    张景霞. 袋式除尘器内流场的模拟实验研究[D]. 上海:东华大学,2008.
    [6]
    王礼鹏,绳冉冉,安敬学,等. 1000 MW电站锅炉布袋除尘器入口烟气流场优化数值模拟[J]. 华电技术,2019,41(7):18-23.
    [7]
    丁倩倩,李珊红,李彩亭,等. 滤袋长度对袋式除尘器内流场影响的数值模拟研究[J]. 环境工程学报,2015,9(11):5521-5526.
    [8]
    乐文毅,段超龙,谢冬明. 组合袋式除尘器的内部流场模拟[J]. 环境工程,2020,38(5):120-125

    ,95.
    [9]
    LIU X D, DING X Y, CHEN C, et al. Investigating the filtration behavior of metal fiber felt using CFD-DEM simulation[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1):426-437.
    [10]
    MAZAHERI A R, AHMADI G, GAMWO I K, et al. Hot-gas flow and particle transport and deposition in a candle filter vessel[J]. Advanced Powder Technology, 2003, 14(1):111-125.
    [11]
    董阳昊,梁珍,沈恒根. 上进风内滤式袋式除尘器的流场优化分析[J]. 东华大学学报(自然科学版),2021,47(3):112-119.
    [12]
    郑金达. 基于粉尘颗粒相检测的滤袋破损状态高灵敏度辨识[D]. 天津:河北工业大学,2018.
    [13]
    谭勇. 基于PLC控制的除尘器粉尘在线检测和滤袋破损定位系统[C]//中国计量协会冶金分会2009年年会论文集,2009:128-131.
    [14]
    杨宏伟. 基于多传感器数据融合的袋式除尘器滤袋破损监测方法研究[D]. 天津:河北工业大学,2018.
    [15]
    高晖,郭烈锦. 除尘器袋室结构改进及内部气固两相流动特征分析[J]. 西安交通大学学报,2000,34(5):50-54.
    [16]
    黄雅琴,李彩亭,李珊红,等. 旋风-布袋复合除尘器优化和除尘效率的数值模拟[J]. 环境工程学报,2020,14(8):2222-2231.
    [17]
    潘伶,杨燕珍. 袋式除尘器内部流场的数值模拟[J]. 环境工程学报,2012,6(8):2750-2754.
  • Relative Articles

    [1]CAO Xiuqin, LI Songyue, YANG Chao, HONG Guoyuan. RESEARCH ON INTERCEPTING CAPACITY OF DIFFERENT TYPES OF INTERCEPTING FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 51-60. doi: 10.13205/j.hjgc.202408007
    [2]YAN Cailian, LIN Xiuli, HU Longji, LIU Jingxian. NUMERICAL SIMULATION ANALYSIS OF FILTRATION VELOCITY DISTRIBUTION OF CYLINDRICAL AND PLEATED FILTER BAGS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 225-232. doi: 10.13205/j.hjgc.202403028
    [3]CEN Hailin, WANG Xihui, WANG Guoqiang. RESEARCH OF SPOILER IN THE CARTRIDGE DUST-COLLECTOR BASED ON NUMERICAL SIMULATION AND ORTHOGONAL EXPERIMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 206-213,228. doi: 10.13205/j.hjgc.202307028
    [4]LIU Pengyu, LI Debo, LIU Yanfeng, QUE Zhengbin, MIAO Jianjie, CHEN Zhaoli. RESEARCH PROGRESS ON NUMERICAL SIMULATION OF SCR DENITRIFICATION SYSTEM IN A COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 224-232. doi: 10.13205/j.hjgc.202210029
    [5]GUO Zirui, CHI Riguang. OPTIMIZATION OF THE PHYSICS PRESSURE UNDER ADD MODE IN PHA PRODUCTION WITH CFD SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 38-44. doi: DOI:10.13205/j.hjgc.202207006
    [6]FENG Lizhong, CONG Riqiang, LIU Yi, QI Yanfang. MICROMIXER IMPROVEMENT AND VERIFICATION FOR AN SCR DENITRATION SYSTEM OF A 330 MW COAL-FIRED POWER UNIT BASED ON CFD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 156-161. doi: 10.13205/j.hjgc.202210021
    [7]CHENG Jiao, YANG Lu-lu, LIU Jing-xian. EXPERIMENTAL STUDY ON BAG DUST FILTER CLEANING AND REGENERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 166-170,177. doi: 10.13205/j.hjgc.202205024
    [8]QI Ya-bing. HYDRODYNAMICS PROPERTIES OF A THREE-PHASE AIR-LIFT INTERNAL-LOOP REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 134-139. doi: 10.13205/j.hjgc.202010021
    [9]YUE Wen-yi, DUAN Chao-long, XIE Dong-ming. SIMULATION OF INTERIOR FLOW FIELD IN THE COMPOSITE BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 120-125,95. doi: 10.13205/j.hjgc.202005021
    [15]Xie Lina, Zhou Jianwei, Xu Wen. CURRENT SITUATION AND ADVANCED TECHNOLOGIES OF TAILINGS MANAGEMENT IN AUSTRALIA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 72-76. doi: 10.13205/j.hjgc.201510016
    [16]Mao Rui, Liu Genfan, Deng Xiang, Fan Ning. NUMERICAL SIMULATION STUDY ON STRUCTURAL DEVELOPMENT OF BAG FILTER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 77-81. doi: 10.13205/j.hjgc.201503016
  • Cited by

    Periodical cited type(9)

    1. 闫彩莲,林秀丽,胡隆基,柳静献. 圆筒和褶皱滤袋过滤风速分布的数值模拟分析. 环境工程. 2024(03): 225-232 . 本站查看
    2. 张凯,王长水,宋鹏,陈辉,何辉. 基于CFD的干法手套箱内气体流场的数值模拟研究. 广东化工. 2024(13): 69-72 .
    3. 林秀丽,胡晓峰,闫彩莲,柳静献. 基于调整局部滤袋渗透率的袋式除尘器流量分配方法. 煤炭学报. 2024(07): 3007-3016 .
    4. 胡傲,宋兴州,高咏辉,吴辉,游永华. 基于Fluent二次开发的布袋除尘器数值模拟研究. 科技和产业. 2024(16): 238-245 .
    5. 曹秀芹,李松岳,杨超,洪国渊. 不同型式截流设施截流能力的研究. 环境工程. 2024(08): 51-60 . 本站查看
    6. 蒋文政,潘继生,蔡沛云,李怀俊. 基于全因子数值模拟的侧进风式滤筒除尘器流场优化研究. 现代制造工程. 2024(09): 1-11 .
    7. 刘奕歌,陈雅,蒋仲安,杨向东,张志豪. 基于流量分配的金属粉尘除尘器多孔介质滤袋结构优化研究. 金属矿山. 2024(12): 258-268 .
    8. 颜翠平,李世龙,毛文浩,敬杰,范俊哲,李红. 金属滤袋除尘器流场特征研究和优化. 金属矿山. 2023(07): 142-152 .
    9. 岑海林,王惜慧,王国强. 基于数值模拟与正交试验的滤筒除尘器导流板研究. 环境工程. 2023(07): 206-213+228 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.6 %FULLTEXT: 19.6 %META: 78.5 %META: 78.5 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.3 %其他: 16.3 %其他: 0.2 %其他: 0.2 %上海: 7.9 %上海: 7.9 %东莞: 1.1 %东莞: 1.1 %临沂: 0.2 %临沂: 0.2 %保定: 0.2 %保定: 0.2 %北京: 1.8 %北京: 1.8 %十堰: 0.4 %十堰: 0.4 %南京: 0.2 %南京: 0.2 %南通: 0.9 %南通: 0.9 %厦门: 1.1 %厦门: 1.1 %台州: 0.9 %台州: 0.9 %合肥: 0.7 %合肥: 0.7 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 1.6 %天津: 1.6 %太原: 0.2 %太原: 0.2 %奥卢: 0.4 %奥卢: 0.4 %宁波: 0.2 %宁波: 0.2 %安卡拉: 1.6 %安卡拉: 1.6 %宜春: 0.4 %宜春: 0.4 %宣城: 0.5 %宣城: 0.5 %常州: 0.4 %常州: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 0.4 %张家口: 0.4 %徐州: 0.5 %徐州: 0.5 %德里: 1.1 %德里: 1.1 %德黑兰: 1.1 %德黑兰: 1.1 %惠州: 0.4 %惠州: 0.4 %成都: 0.5 %成都: 0.5 %扬州: 1.3 %扬州: 1.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 2.0 %杭州: 2.0 %榆林: 0.2 %榆林: 0.2 %武汉: 0.9 %武汉: 0.9 %沈阳: 0.9 %沈阳: 0.9 %沧州: 0.2 %沧州: 0.2 %河池: 0.5 %河池: 0.5 %泰州: 0.5 %泰州: 0.5 %济南: 0.4 %济南: 0.4 %济源: 0.2 %济源: 0.2 %淮安: 0.2 %淮安: 0.2 %温州: 1.4 %温州: 1.4 %湖州: 0.4 %湖州: 0.4 %漯河: 8.6 %漯河: 8.6 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 20.3 %芒廷维尤: 20.3 %芝加哥: 2.2 %芝加哥: 2.2 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.5 %衢州: 0.5 %西宁: 1.1 %西宁: 1.1 %西安: 0.9 %西安: 0.9 %辽阳: 0.5 %辽阳: 0.5 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %里昂: 4.3 %里昂: 4.3 %重庆: 0.2 %重庆: 0.2 %银川: 0.2 %银川: 0.2 %长沙: 3.2 %长沙: 3.2 %长治: 0.2 %长治: 0.2 %马鞍山: 0.2 %马鞍山: 0.2 %鹰潭: 0.2 %鹰潭: 0.2 %龙岩: 0.5 %龙岩: 0.5 %其他其他上海东莞临沂保定北京十堰南京南通厦门台州合肥唐山嘉兴天津太原奥卢宁波安卡拉宜春宣城常州常德广州张家口徐州德里德黑兰惠州成都扬州无锡昆明晋城朝阳杭州榆林武汉沈阳沧州河池泰州济南济源淮安温州湖州漯河石家庄芒廷维尤芝加哥苏州衡阳衢州西宁西安辽阳运城遵义邯郸郑州里昂重庆银川长沙长治马鞍山鹰潭龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (436) PDF downloads(11) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return