Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
Citation: WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014

PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)

doi: 10.13205/j.hjgc.202211014
  • Received Date: 2022-01-04
    Available Online: 2023-03-24
  • Goethite-modified biochar (GMB) was prepared by hydrolytic co-precipitation under different pyrolysis temperatures and raw material ratios, characterized by SEM-EDS, XRD, FTIR and XPS. Adsorption experiments of Cr(Ⅵ) for exploring the adsorption performance and mechanism were carried out. The results showed that:1) modification with goethite formed iron hydroxyl oxide (FeOOH) on the surface of biochar and greatly improved its adsorption capacity; 2) the best adsorption capacity of 20.67 mg/g was performed by modified biochar GMB600-12 with pyrolysis temperature at 600℃ and mass ratio of biochar and Fe(NO3)3·9H2O at 1:12; 3) the adsorption of Cr(Ⅵ) was mainly chemisorption as revealed by quasi-second-order kinetics, and both Langmuir model and Freundlich model could well describe the adsorption characteristics of Cr(Ⅵ) by GMB; 4) the removal of Cr(Ⅵ) from aqueous solution by GMB is a synergistic effect of redox and surface adsorption.
  • [1]
    CUI X Q, LU M, KHAN M B, et al. Hydrothermal carbonization of different wetland biomass wastes:phosphorus reclamation and hydrochar production[J]. Waste Management, 2020, 102:106-113.
    [2]
    ZHANG Z K, ZHU Z Y, SHEN B X, et al. Insights into biochar and hydrochar production and applications:a review[J]. Energy, 2019, 171:581-598.
    [3]
    SINGH E, KUMAR A, MISHRA R, et al. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution[J]. Bioresource Technology, 2021, 320:124278.
    [4]
    ABDELHADI S O, DOSORETZ C G, RYTWO G, et al. Production of biochar from olive mill solid waste for heavy metal removal[J]. Bioresource Technology, 2017, 244:759-767.
    [5]
    YAO Z Y, YOU S M, GE T S, et al. Biomass gasification for syngas and biochar co-production:energy application and economic evaluation[J]. Applied Energy, 2018, 209:43-55.
    [6]
    de CAPRARIIS B, de FILIPPIS P, HERNANDEZ A D, et al. Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass[J]. Journal of Environmental Management, 2017, 197:231-238.
    [7]
    XU Y G, BAI T X, LI Q, et al. Influence of pyrolysis temperature on the characteristics and lead(Ⅱ) adsorption capacity of phosphorus-engineered poplar sawdust biochar[J]. Journal of Analytical and Applied Pyrolysis, 2021, 154:105010.
    [8]
    LIU S B, HUANG B X, CHAI L Y, et al. Enhancement of As(Ⅴ) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. Rsc Advances, 2017, 7(18):10891-10900.
    [9]
    LI R H, WANG J J, GASTON L A, et al. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution[J]. Carbon, 2018, 129:674-687.
    [10]
    赵洁,贺宇宏,张晓明,等. 酸碱改性对生物炭吸附Cr(Ⅵ)性能的影响[J]. 环境工程, 2020, 38(6):28-34.
    [11]
    ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512-518.
    [12]
    席冬冬,李晓敏,熊子璇,等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6):58-66.
    [13]
    袁健,钱雅洁,薛罡,等. 活性污泥水热碳化法制备磁性炭及对水体Cd2+及Pb2+的去除[J]. 环境工程, 2020, 38(2):55-62.
    [14]
    GUO X T, ZHANG J, GE J H, et al. Sorption and photodegradation of tylosin and sulfamethazine by humic acid-coated goethite[J]. Rsc Advances, 2015, 5(122):100464-100471.
    [15]
    WANG H, ZHU J, FU Q L, et al. Adsorption of phosphate on pure and humic acid-coated ferrihydrite[J]. Journal of Soils and Sediments, 2015, 15(7):1500-1509.
    [16]
    LIU H, LU X C, LI M, et al. Structural Incorporation of Manganese into Goethite and Its Enhancement of Pb(Ⅱ) Adsorption[J]. Environmental Science & Technology, 2018, 52(8):4719-4727.
    [17]
    QIN H B, YANG S T, TANAKA M, et al. Scandium immobilization by goethite:surface adsorption versus structural incorporation[J]. Geochimica Et Cosmochimica Acta, 2021, 294:255-272.
    [18]
    葛军. Na+、K+、Ca2+与Cr6+在活性炭上的竞争吸附及其应用研究[D]. 马鞍山:安徽工业大学, 2018.
    [19]
    URONE P F. Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents[J]. Analytical Chemistry. 1955, 27(8):1354-1355.
    [20]
    YANG Y, SUN K, HAN L F, et al. Effect of minerals on the stability of biochar[J]. Chemosphere, 2018, 204:310-317.
    [21]
    RONSSE F, van HECKE S, DICKINSON D, et al. Production and characterization of slow pyrolysis biochar:influence of feedstock type and pyrolysis conditions[J]. Global Change Biology Bioenergy, 2013, 5(2):104-115.
    [22]
    ZHU S H, ZHAO J J, ZHAO N, et al. Goethite modified biochar as a multifunctional amendment for cationic Cd(Ⅱ), anionic As(Ⅲ), roxarsone, and phosphorus in soil and water[J]. Journal of Cleaner Production, 2020, 247:119579.
    [23]
    CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102(2):716-723.
    [24]
    朱司航,赵晶晶,尹英杰,等. 针铁矿改性生物炭对砷吸附性能[J]. 环境科学, 2019, 40(6):2773-2782.
    [25]
    ZHANG Z R, YU H Q, ZHU R X, et al. Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions[J]. Environmental Science and Pollution Research, 2020, 27(22):28132-28145.
    [26]
    HE R, YUAN X Z, HUANG Z L, et al. Activated biochar with iron-loading and its application in removing Cr(Ⅵ) from aqueous solution[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2019, 579:123642.
    [27]
    张守秋,岑洁,吕德义,等. 纳米零价铁去除水中重金属铅、铬离子的研究[J]. 高校化学工程学报, 2019, 33(3):524-532.
    [28]
    陈林,平巍,闫彬,等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.
  • Relative Articles

    [1]XIE Wei, YUAN Jiajia, YUAN Huizhou, KE Shuizhou. ADSORPTION PERFORMANCE AND MECHANISM OF SULFAMETHOXAZOLE BY ACID/ALKALI MODIFIED CANNA INDICA BIOCHARS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 201-209. doi: 10.13205/j.hjgc.202412024
    [2]LENG Jiewen, SHI Ke, WANG Xuejing, KOU Wei, FU Xiaowei, SUN Zhaonan. ADSORPTION OF TETRACYCLINE ON BIOCHAR PREPARED FROM MUNICIPAL SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 75-82. doi: 10.13205/j.hjgc.202405010
    [3]LI Wei, ZHANG Ji, ZHU Xinyu, PAN Wenhao, ZHU Lei. PREPARATION OF EGG SHELL BIOCHAR AND ITS ADSORPTION PERFORMANCE FOR Cu(Ⅱ) AND ANILINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 98-106,201. doi: 10.13205/j.hjgc.202305014
    [4]CHEN Long, LI Kai, TU Zhi, ZHOU Yu, ZHANG Jilong, MI Baobin, WU Fangfang. ADSORPTION PERFORMANCE AND MECHANISM OF Zn2+ ON MICROWAVE-PREPARED ALKALI LIGNIN BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 100-108. doi: 10.13205/j.hjgc.202308013
    [5]ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
    [6]XU Wenjun, HUANG Dandan, LIANG Mingshen, XU Qiyong. EFFECT OF HYDROGEN SUFIDE ON METHANE OXIDATION OF BIOCHAR-AMENDED LANDFILL COVER SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 120-126. doi: 10.13205/j.hjgc.202202019
    [7]JIANG Yuzhu, HUI Helong, LIU Hongyi, DING Guangchao, LU Wenyi, LI Songgeng. STUDY ON THE EFFECTIVENESS OF TEXTILE DYING SLUDGE BIOCHAR IN TREATING REFRACTORY ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 32-39. doi: 10.13205/j.hjgc.202210005
    [8]GUAN Meng-sha, LUO Li-yu, SHEN Si-wen, ZHOU Li-song, QIU Jiang-kun, LI Rui-hua. ADSORPTION PERFORMANCE AND MECHANISM OF NATURAL PYRRHOTITE FOR As (Ⅲ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 33-40. doi: 10.13205/j.hjgc.202102006
    [9]SHEN Ling-fang, DONG Jun, SHAN Sheng-dao, SHU Wan-jun. INFLUENCE OF MAGNETIC BIOCHAR PREPARATION METHODS ON ADSORPTION CHARACTERISTICS OF Pb2+ IN WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 48-55. doi: 10.13205/j.hjgc.202109008
    [10]WANG Yu-hang, YU Wei, ZHAO Si-yu, LIU Shan, JIANG Xiao-hui, LI Qi. ADSORPTION OF ANTIBIOTIC DRUGS IN WATER ENVIRONMENT BY MODIFIED BIOCHAR:A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 91-99,134. doi: 10.13205/j.hjgc.202112014
    [11]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [12]ZHOU Jun, LI Yan, GUAN Yi-dong, HUANG Li-dong, JIN Hong-mei, XIAO Qiong, SONG Jiang-sheng. MIXED SORPTION OF THREE AQUEOUS SULFONAMIDES ONTO THE BIOCHAR DERIVED FROM POPLAR WOOD CHIPS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 1-6,13. doi: 10.13205/j.hjgc.202103001
    [13]LI Rong, XU Duo, WEI Jie, WANG Dong-tian. PREPARATION OF ADSORBENT BY COMBINED DRINKING WATER TREATMENT SLUDGE AND POWDERED ACTIVATED CARBON AND ITS AMMONIUM REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 95-100,112. doi: 10.13205/j.hjgc.202009016
    [14]FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009
    [15]ZHAO Jie, HE Yu-hong, ZHANG Xiao-ming, LI Qi, YANG Wei-chun. EFFECT ON Cr(Ⅵ) ADSORPTION PERFORMANCE OF ACID-BASE MODIFIED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 28-34. doi: 10.13205/j.hjgc.202006005
    [16]LI Pei-pei, ZHOU Yu-zhou, XIANG Yu-jia, ZHOU Yao-yu, ZHU Hong-mei, RONG Xiang-min. ADSORPTION PERFORMANCE OF P-ARSANILIC ACID IN AQUEOUS SOLUTION BY BIOCHAR SUPPORTED MANGANESE FERRATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 75-79,86. doi: 10.13205/j.hjgc.202001011
    [17]LIU Ling-yan, CHEN Shuang-rong, SONG Xue-yan, WANG Sheng-nan, YU Jun-xia, LU Yi-feng. RESEARCH PROGRESS IN REMOVAL OF PHOSPHATE FROM WATER BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 91-97. doi: 10.13205/j.hjgc.202011015
    [18]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [19]Zhang Xiaoxu, Zhang Hongyu, Li Guoxue, . EFFECT OF ADDITIVE QUANTITY OF STALKS ON H2 S AND NH3 EMISSION DURING KITCHEN WASTE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 95-99. doi: 10.13205/j.hjgc.201501022
    [20]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
  • Cited by

    Periodical cited type(5)

    1. 张洛红,刘彩琴,赵鑫,刘建宇,杨巧巧,王乐力,李庆. 铁锰铈-PA6基静电纺吸附剂的制备及其对水中铅和铬的吸附性能. 化工新型材料. 2024(01): 207-213+219 .
    2. 李钰辉,卓桂华,沈凯茜,李海霞,景乐,陈琬,甄广印,郑育毅. 磁改性污泥基生物炭对猪粪堆肥及土霉素降解的影响. 环境科学学报. 2024(04): 187-197 .
    3. 赵啟超,白红娟,韩群英,孙竹梅,刘鹏霄,王子豪,叶宇晗,王瑶. 低温热解磷酸改性花生壳生物炭的制备及对水中Cr(Ⅵ)的去除. 中北大学学报(自然科学版). 2024(04): 503-512 .
    4. 崔雅云,朱琳,盖楠,杜江坤. 针铁矿硫化过程对Cr(Ⅵ)还原的影响与机理. 安全与环境工程. 2024(04): 236-243 .
    5. 钟鑫莲,王梦璐,季宏兵. 铁基生物炭复合材料修复重金属污染的研究进展. 化工新型材料. 2024(10): 61-65 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 85.3 %META: 85.3 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.1 %其他: 22.1 %其他: 0.5 %其他: 0.5 %China: 1.0 %China: 1.0 %Girard: 0.5 %Girard: 0.5 %东莞: 1.5 %东莞: 1.5 %临汾: 0.5 %临汾: 0.5 %代顿: 0.5 %代顿: 0.5 %北京: 2.5 %北京: 2.5 %南京: 2.0 %南京: 2.0 %南昌: 0.5 %南昌: 0.5 %台州: 2.5 %台州: 2.5 %合肥: 1.5 %合肥: 1.5 %呼和浩特: 1.5 %呼和浩特: 1.5 %圣保罗: 1.0 %圣保罗: 1.0 %天津: 5.4 %天津: 5.4 %密蘇里城: 1.0 %密蘇里城: 1.0 %常德: 1.0 %常德: 1.0 %广州: 0.5 %广州: 0.5 %张家口: 1.0 %张家口: 1.0 %成都: 1.5 %成都: 1.5 %扬州: 0.5 %扬州: 0.5 %无锡: 2.5 %无锡: 2.5 %昆明: 1.0 %昆明: 1.0 %晋城: 1.0 %晋城: 1.0 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.9 %杭州: 2.9 %武汉: 0.5 %武汉: 0.5 %汕头: 1.0 %汕头: 1.0 %洛阳: 2.0 %洛阳: 2.0 %济源: 1.0 %济源: 1.0 %淄博: 0.5 %淄博: 0.5 %温特黑文: 0.5 %温特黑文: 0.5 %湖州: 1.5 %湖州: 1.5 %漯河: 1.0 %漯河: 1.0 %福州: 0.5 %福州: 0.5 %纽约: 1.0 %纽约: 1.0 %绍兴: 2.5 %绍兴: 2.5 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 2.5 %芝加哥: 2.5 %衢州: 0.5 %衢州: 0.5 %西宁: 4.9 %西宁: 4.9 %西安: 1.0 %西安: 1.0 %贝克斯菲尔德: 0.5 %贝克斯菲尔德: 0.5 %贵阳: 1.0 %贵阳: 1.0 %运城: 3.4 %运城: 3.4 %遵义: 0.5 %遵义: 0.5 %郑州: 1.0 %郑州: 1.0 %重庆: 1.5 %重庆: 1.5 %长沙: 1.0 %长沙: 1.0 %其他其他ChinaGirard东莞临汾代顿北京南京南昌台州合肥呼和浩特圣保罗天津密蘇里城常德广州张家口成都扬州无锡昆明晋城朝阳杭州武汉汕头洛阳济源淄博温特黑文湖州漯河福州纽约绍兴芒廷维尤芝加哥衢州西宁西安贝克斯菲尔德贵阳运城遵义郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (173) PDF downloads(5) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return