Citation: | TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020 |
[1] |
SZULCZEWSKI M D, HELMKE P A, BLEAM W F. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils[J]. Environmental Science & Technology, 1997, 31(10):2954-2959.
|
[2] |
MALHERBE J, ISAURE M P, SEBY F, et al. Evaluation of hexavalent chromium extraction method EPA Method 3060a for soils using XANES spectroscopy[J]. Environmental Science & Technology, 2011, 45(24):10492-10500.
|
[3] |
JAMES B R, PETURA J C, VITALE R J, et al. Hexavalent chromium extraction from soils:a comparison of five methods[J]. Environmental Science & Technology, 1995, 29(9):2377-2381.
|
[4] |
MILLS C T, BERN C R, WOLF R E, et al. Modifications to EPA Method 3060a to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Environmental Science & Technology, 2017, 51(19):11235.
|
[5] |
中华人民共和国生态环境部. 固体废物六价铬的测定碱消解/火焰原子吸收分光光度法(发布稿):HJ 687-2014[S]. 北京; 中国环境科学出版社. 2014.
|
[6] |
EPA. Method 3060a:Alkaline digestion for hexavalent chromium[S]. Washington, DC:U.S.EPA, 1996.
|
[7] |
EPA. Method 7196a:Chromium, hexavalent (colorimetric)[S]. Washington, DC:U.S.EPA, 1992.
|
[8] |
EPA. Method 7199:Determination of hexavalent chromium in drinking water, groundwater and industrial wastewater effluents by ion chromatography[S]. Washington, DC:U.S.EPA, 1996.
|
[9] |
STANDARD E. 碱溶液提取法提取土壤和固废中六价铬的离子色谱法(DIN EN 15192-2007)[S]. European Standard. 2007.
|
[10] |
中华人民共和国生态环境部. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法:HJ 803-2016[S]. 北京:中国环境科学出版社. 2016.
|
[11] |
中华人民共和国生态环境部. 土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法:HJ 1082-2019[S]. 北京:中国环境出版集团. 2019.
|
[12] |
RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Inorganic Chemistry, 1987, 26(3):345-349.
|
[13] |
RAI D, HESS N J, RAO L F, et al. Thermodynamic model for the solubility of Cr(OH)3(am) in concentrated NaOH and NaOH-NaNO3 solutions[J]. Journal of Solution Chemistry, 2002, 31(5):343-367.
|
[14] |
中华人民共和国生态环境部. 《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法(征求意见稿)》编制说明.[2018-12-03]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201812/W020181211554962613024.pdf[M].
|
[15] |
YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil:a review[J]. Science of the Total Environment, 2021, 773:145654.
|
[16] |
肖明波,黄卓尔,周树杰,等. 火焰原子吸收法测定高色度含铬废水中的六价铬[J]. 广州环境科学, 2008(3):37-39.
|
[17] |
林大泉,陈季英. 原子吸收分光光度法分别测定水中的三价铬和六价铬[J]. 分析化学, 1982,10(1):36-39.
|
[18] |
陶美彤. 高浓度铬污染土壤淋洗修复效果及影响因素的研究[D]. 长春:吉林大学, 2019.
|
[19] |
徐雷, 代惠萍, 魏树和. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 2021, 41(11):5237-5244.
|
[20] |
李丹丹,郝秀珍,周东美,等. 淋洗法修复铬渣污染场地实验研究[J]. 农业环境科学学报, 2011, 30(12):2451-2457.
|
[21] |
HU S Y, LI D, MAN Y D, et al. Evaluation of remediation of Cr(Ⅵ)-contaminated soils by calcium polysulfide:long-term stabilization and mechanism studies[J]. Science of the Total Environment, 2021, 790:148140.
|
[22] |
HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr(Ⅵ) by Method 3060a & Method 7196a[J]. Journal of Hazardous Materials, 2020, 398:122837.
|
[23] |
TARTAR H V, BRADLEY C E. On the composition of lime-sulphur spray[J]. Journal of Industrial & Engineering Chemistry, 1910, 2(6):271-277.
|
[24] |
中华人民共和国生态环境部. 水质六价铬的测定二苯碳酰二肼分光光度法:GB 7467-87[S]. 1987.
|
[25] |
PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264:490-497.
|
[26] |
DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fe-x, Cr1-x)(OH)3 precipitation:implications for Cr sequestration[J]. Environmental Science & Technology, 2016, 50(4):1741-1749.
|
[27] |
ARATANI T, YAHIKOZAWA K, MATOBA H, et al. Conditions for the precipitation of heavy metals from wastewater by the lime sulfurated solution (calcium polysulfide) process[J]. Bulletin of the Chemical Society of Japan, 1978, 51(6):1755-1760.
|
[28] |
SASS B M, RAI D. Solubility of amorphous chromium(Ⅲ)-iron(Ⅲ) hydroxide solid-solutions[J]. Inorganic Chemistry, 1987, 26(14):2228-2232.
|
[29] |
RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Cheminform, 1987, 26(3):345-349.
|
[30] |
TAVANI E L, VOLZONE C. Adsorption of chromium(Ⅲ) from a tanning wastewater on kaolinite[J]. Journal of the Society of Leather Technologists and Chemists, 1997, 81(4):143-148.
|
[31] |
GRIFFIN R A, AU A K, FROST R R. Effect of pH on adsorption of chromium from landfill-leachate by clay-minerals[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 1977, 12(8):431-449.
|
[32] |
GUSTAFSSON J P, PERSSON I, OROMIEH A G, et al. Chromium(Ⅲ) complexation to natural organic matter:mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3):1753-1761.
|
[33] |
中华人民共和国生态环境部,国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S]. 2018.
|
[34] |
BARTLETT R, JAMES B. Behavior of chromium in soils.3. Oxidation[J]. Journal of Environmental Quality, 1979, 8(1):31-35.
|
[35] |
ZATKA V J. Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium[J]. American Industrial Hygiene Association Journal, 1985, 46(6):327-331.
|
[36] |
JAMES B R, BARTLETT R J. Behavior of chromium in soils. 6. Interactions between oxidation-reduction and organic complexation[J]. Journal of Environmental Quality, 1983, 12(2):173-176.
|
[37] |
TOKUNAGA T K, WAN J M, FIRESTONE M K, et al. In situ reduction of chromium(Ⅵ) in heavily contaminated soils through organic carbon amendment[J]. Journal of Environmental Quality, 2003, 32(5):1641-1649.
|
[38] |
JIANG Y T, YANG F, DAI M, et al. Application of microbial immobilization technology for remediation of Cr(Ⅵ) contamination:a review[J]. Chemosphere, 2021(2):131721.
|
[39] |
FU L J, FENG A X, XIAO J J, et al. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization[J]. Journal of Hazardous Materials, 2021, 403:123847.
|
[40] |
LEITA L, MARGON A, SINICCO T, et al. Glucose promotes the reduction of hexavalent chromium in soil[J]. Geoderma, 2011, 164(3/4):122-127.
|
[41] |
QU M M, CHEN J M, HUANG Q Q, et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields[J]. International Biodeterioration & Biodegradation, 2018, 128:41-47.
|
[42] |
HOU S Y, WU B, PENG D H, et al. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron[J]. Environmental Pollution, 2019, 252:553-561.
|
[43] |
de SA I P, de SOUZA G B, NOGUEIRA A R D. Chromium speciation in organic fertilizer by cloud point extraction and optimization through experimental Doehlert design as support for legislative aspects[J]. Microchemical Journal, 2021, 160:105618.
|
[44] |
PUZON G J, ROBERTS A G, KRAMER D M, et al. Formation of soluble organo-chromium(Ⅲ) complexes after chromate reduction in the presence of cellular organics[J]. Environmental Science & Technology, 2005, 39(8):2811-2817.
|
[45] |
MIDDLETON S S, BENCHEIKH-LATMANI R, MACKEY M R, et al. Cometabolism of Cr(Ⅵ) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth[J]. Biotechnology and Bioengineering, 2003, 83(6):627-637.
|