Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FANG Qing, XIAN Ping, MENG Zheng-cheng. ENVIRONMENTAL HEALTH RISK ASSESSMENT MODEL OF AGRICULTURAL LAND BASED ON MONTE CARLO SIMULATION AND ITS APPLICATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 147-152. doi: 10.13205/j.hjgc.202102024
Citation: TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020

INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY

doi: 10.13205/j.hjgc.202211020
  • Received Date: 2022-01-17
    Available Online: 2023-03-24
  • As the only legal method for the determination of hexavalent chromium[Cr(Ⅵ)] in soils and sediments, alkaline digestion/flame atomic absorption spectrometry (specified in China's national standard, HJ 1082-2019) was implemented in China in June 2020. However, false positive and negative deviation were reported by some researchers and engineering projects for Cr(Ⅵ)-contaminated soils. The positive and negative biases caused by dissolved Cr(Ⅲ), flushing agent (citrate) and reductants (FeSO4, Na2S2O5, Na2S and CaSx) were investigated in this study. Experimental results showed that Cr(Ⅲ) produced during remediation was supersaturated over the remediation and determination process, resulting in small positive biases which may cause erroneous judgment. The adsorption effect of soil to the Cr(Ⅲ) played a crucial role in mitigating the positive bias to below the determination limit. Citrate could significantly enhance the dissolution of Cr(Ⅲ) to a level resulting in positive bias. When a large number of residual reductants remained in soils after remediation, they could reduce the extracted Cr(Ⅵ) into Cr(Ⅲ) during alkaline digestion or pH adjustment, resulting in significant negative bias. This negative bias couldn't be offset by the positive bias of FAAS, due to the uncertainty and small amplitude of the positive biases.
  • [1]
    SZULCZEWSKI M D, HELMKE P A, BLEAM W F. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils[J]. Environmental Science & Technology, 1997, 31(10):2954-2959.
    [2]
    MALHERBE J, ISAURE M P, SEBY F, et al. Evaluation of hexavalent chromium extraction method EPA Method 3060a for soils using XANES spectroscopy[J]. Environmental Science & Technology, 2011, 45(24):10492-10500.
    [3]
    JAMES B R, PETURA J C, VITALE R J, et al. Hexavalent chromium extraction from soils:a comparison of five methods[J]. Environmental Science & Technology, 1995, 29(9):2377-2381.
    [4]
    MILLS C T, BERN C R, WOLF R E, et al. Modifications to EPA Method 3060a to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Environmental Science & Technology, 2017, 51(19):11235.
    [5]
    中华人民共和国生态环境部. 固体废物六价铬的测定碱消解/火焰原子吸收分光光度法(发布稿):HJ 687-2014[S]. 北京; 中国环境科学出版社. 2014.
    [6]
    EPA. Method 3060a:Alkaline digestion for hexavalent chromium[S]. Washington, DC:U.S.EPA, 1996.
    [7]
    EPA. Method 7196a:Chromium, hexavalent (colorimetric)[S]. Washington, DC:U.S.EPA, 1992.
    [8]
    EPA. Method 7199:Determination of hexavalent chromium in drinking water, groundwater and industrial wastewater effluents by ion chromatography[S]. Washington, DC:U.S.EPA, 1996.
    [9]
    STANDARD E. 碱溶液提取法提取土壤和固废中六价铬的离子色谱法(DIN EN 15192-2007)[S]. European Standard. 2007.
    [10]
    中华人民共和国生态环境部. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法:HJ 803-2016[S]. 北京:中国环境科学出版社. 2016.
    [11]
    中华人民共和国生态环境部. 土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法:HJ 1082-2019[S]. 北京:中国环境出版集团. 2019.
    [12]
    RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Inorganic Chemistry, 1987, 26(3):345-349.
    [13]
    RAI D, HESS N J, RAO L F, et al. Thermodynamic model for the solubility of Cr(OH)3(am) in concentrated NaOH and NaOH-NaNO3 solutions[J]. Journal of Solution Chemistry, 2002, 31(5):343-367.
    [14]
    中华人民共和国生态环境部. 《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法(征求意见稿)》编制说明.[2018-12-03]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/201812/W020181211554962613024.pdf[M].
    [15]
    YANG Z H, ZHANG X M, JIANG Z, et al. Reductive materials for remediation of hexavalent chromium contaminated soil:a review[J]. Science of the Total Environment, 2021, 773:145654.
    [16]
    肖明波,黄卓尔,周树杰,等. 火焰原子吸收法测定高色度含铬废水中的六价铬[J]. 广州环境科学, 2008(3):37-39.
    [17]
    林大泉,陈季英. 原子吸收分光光度法分别测定水中的三价铬和六价铬[J]. 分析化学, 1982,10(1):36-39.
    [18]
    陶美彤. 高浓度铬污染土壤淋洗修复效果及影响因素的研究[D]. 长春:吉林大学, 2019.
    [19]
    徐雷, 代惠萍, 魏树和. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 2021, 41(11):5237-5244.
    [20]
    李丹丹,郝秀珍,周东美,等. 淋洗法修复铬渣污染场地实验研究[J]. 农业环境科学学报, 2011, 30(12):2451-2457.
    [21]
    HU S Y, LI D, MAN Y D, et al. Evaluation of remediation of Cr(Ⅵ)-contaminated soils by calcium polysulfide:long-term stabilization and mechanism studies[J]. Science of the Total Environment, 2021, 790:148140.
    [22]
    HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr(Ⅵ) by Method 3060a & Method 7196a[J]. Journal of Hazardous Materials, 2020, 398:122837.
    [23]
    TARTAR H V, BRADLEY C E. On the composition of lime-sulphur spray[J]. Journal of Industrial & Engineering Chemistry, 1910, 2(6):271-277.
    [24]
    中华人民共和国生态环境部. 水质六价铬的测定二苯碳酰二肼分光光度法:GB 7467-87[S]. 1987.
    [25]
    PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr(Ⅲ) and Fe(Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264:490-497.
    [26]
    DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fe-x, Cr1-x)(OH)3 precipitation:implications for Cr sequestration[J]. Environmental Science & Technology, 2016, 50(4):1741-1749.
    [27]
    ARATANI T, YAHIKOZAWA K, MATOBA H, et al. Conditions for the precipitation of heavy metals from wastewater by the lime sulfurated solution (calcium polysulfide) process[J]. Bulletin of the Chemical Society of Japan, 1978, 51(6):1755-1760.
    [28]
    SASS B M, RAI D. Solubility of amorphous chromium(Ⅲ)-iron(Ⅲ) hydroxide solid-solutions[J]. Inorganic Chemistry, 1987, 26(14):2228-2232.
    [29]
    RAI D, SASS B M, MOORE D A. Chromium(Ⅲ) hydrolysis constants and solubility of chromium(Ⅲ) hydroxide[J]. Cheminform, 1987, 26(3):345-349.
    [30]
    TAVANI E L, VOLZONE C. Adsorption of chromium(Ⅲ) from a tanning wastewater on kaolinite[J]. Journal of the Society of Leather Technologists and Chemists, 1997, 81(4):143-148.
    [31]
    GRIFFIN R A, AU A K, FROST R R. Effect of pH on adsorption of chromium from landfill-leachate by clay-minerals[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 1977, 12(8):431-449.
    [32]
    GUSTAFSSON J P, PERSSON I, OROMIEH A G, et al. Chromium(Ⅲ) complexation to natural organic matter:mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3):1753-1761.
    [33]
    中华人民共和国生态环境部,国家市场监督管理总局. 土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S]. 2018.
    [34]
    BARTLETT R, JAMES B. Behavior of chromium in soils.3. Oxidation[J]. Journal of Environmental Quality, 1979, 8(1):31-35.
    [35]
    ZATKA V J. Speciation of hexavalent chromium in welding fumes interference by air oxidation of chromium[J]. American Industrial Hygiene Association Journal, 1985, 46(6):327-331.
    [36]
    JAMES B R, BARTLETT R J. Behavior of chromium in soils. 6. Interactions between oxidation-reduction and organic complexation[J]. Journal of Environmental Quality, 1983, 12(2):173-176.
    [37]
    TOKUNAGA T K, WAN J M, FIRESTONE M K, et al. In situ reduction of chromium(Ⅵ) in heavily contaminated soils through organic carbon amendment[J]. Journal of Environmental Quality, 2003, 32(5):1641-1649.
    [38]
    JIANG Y T, YANG F, DAI M, et al. Application of microbial immobilization technology for remediation of Cr(Ⅵ) contamination:a review[J]. Chemosphere, 2021(2):131721.
    [39]
    FU L J, FENG A X, XIAO J J, et al. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization[J]. Journal of Hazardous Materials, 2021, 403:123847.
    [40]
    LEITA L, MARGON A, SINICCO T, et al. Glucose promotes the reduction of hexavalent chromium in soil[J]. Geoderma, 2011, 164(3/4):122-127.
    [41]
    QU M M, CHEN J M, HUANG Q Q, et al. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields[J]. International Biodeterioration & Biodegradation, 2018, 128:41-47.
    [42]
    HOU S Y, WU B, PENG D H, et al. Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron[J]. Environmental Pollution, 2019, 252:553-561.
    [43]
    de SA I P, de SOUZA G B, NOGUEIRA A R D. Chromium speciation in organic fertilizer by cloud point extraction and optimization through experimental Doehlert design as support for legislative aspects[J]. Microchemical Journal, 2021, 160:105618.
    [44]
    PUZON G J, ROBERTS A G, KRAMER D M, et al. Formation of soluble organo-chromium(Ⅲ) complexes after chromate reduction in the presence of cellular organics[J]. Environmental Science & Technology, 2005, 39(8):2811-2817.
    [45]
    MIDDLETON S S, BENCHEIKH-LATMANI R, MACKEY M R, et al. Cometabolism of Cr(Ⅵ) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth[J]. Biotechnology and Bioengineering, 2003, 83(6):627-637.
  • Relative Articles

    [1]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [2]WANG Tianqi, LI Yanling, YANG Yang, NIU Shuo, WANG Meie, CHEN Weiping. EFFECT AND APPLICATION RISK OF PLOUGH-LAYER RECONSTRUCTION ON ACCUMULATION OF CADMIUM BY WHEAT GRAIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 116-122,169. doi: 10.13205/j.hjgc.202304016
    [3]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [4]ZHANG Kaijie, FENG Qian, SHANG Weichun, OU Zixuan, CAO Jiashun. SYNTHESIS OF CORE-SHELL CHITOSAN-Ag/TiO2 COMPOSITE BEADS FOR DEGRADATION OF IBUPROFEN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 9-17. doi: DOI:10.13205/j.hjgc.202207002
    [5]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [6]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [7]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
    [8]LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032
    [9]SU Chang, LI Ying-fen, YAN Xing, CHONG Yun-xiao. DIVERSITY OF IRON MINERALS AND THEIR ADSORPTION TO Cd IN FERROUS OXIDATION AND DENITRIFICATION BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 76-83. doi: 10.13205/j.hjgc.202005014
    [10]CAO Xin, WEI Qun, SU Yuan, LIAO Yun-sheng, JIN Li. PHYSIOLOGICAL RESPONSE OF CHLORELLA PYRENOIDOSA BIOFILM TO CADMIUM STRESS AND ITS REMOVAL EFFECT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 77-80,127. doi: 10.13205/j.hjgc.202002010
    [15]Wang Xiquan Zhao Dandan Yu Lihong, . STUDY ON DEGRADATION OF METHYLENE BLUE BY GRAPHENE/TiO2[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 38-42. doi: 10.13205/j.hjgc.201502008
    [16]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
    [17]Jia Dongjing, Guo Xinchao, Sun Changshun, . STUDY ON DIALYSIS OF YAM DIOSGENIN HYDROLYTIC WASTEWATER IN HOMOGENEOUS ION EXCHANGE MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 23-26. doi: 10.13205/j.hjgc.201501006
  • Cited by

    Periodical cited type(18)

    1. 郑立龙,张德程,郝连成,代友旭,张健康,李先锋,任开文,刘建,孔凡全,王勇峰. 广东雷州东部土壤重金属分布特征、来源分析及健康风险评价. 中国地质. 2025(01): 300-314 .
    2. 王胜蓝,蒋月,马杰,王俭,刘萍,邓力,孙静,龚玲. 基于蒙特卡罗模拟的危险废物处置场地下水重金属健康风险评估. 有色金属(冶炼部分). 2024(01): 143-153 .
    3. 马海珍,张振师,李权,许林,戈洋,杨贞. 某化工厂土壤与地下水Cr~(6+)污染分布及健康风险. 西北地质. 2024(01): 73-82 .
    4. 周礼洋. 典型有机化工厂污染地块氯代烃分布特征及基于蒙特卡洛模拟的风险评估. 环境工程技术学报. 2024(01): 98-111 .
    5. 李雨晨,郑刘根,陈星,陈永春,安士凯,安燕飞,李兵. 基于PMF模型的矿区土壤重金属来源解析. 环境监测管理与技术. 2024(01): 17-22 .
    6. 张栋,李永春,苏日力格,袁国礼,邰苏日嘎拉,王永亮,陈国栋,周文辉,杜雨春子,杨建雨. 内蒙古五原县某地土壤重金属生态健康风险评价. 中国地质. 2024(01): 248-263 .
    7. 袁帅,张思源,张雪琼,袁国礼,王永亮,边鹏,邰苏日嘎拉. 内蒙古乌拉特前旗大佘太地区农田表层土壤重金属生态安全风险评价. 中国地质. 2024(05): 1686-1700 .
    8. 王红梅,吴健芳,田自强,李宇婷,龚斌. 土壤污染物健康风险评价技术现状及发展趋势. 环境工程技术学报. 2023(02): 778-784 .
    9. 马杰,孙静,蒋月,陈召沪,刘萍. 某铅锌尾矿库周边土壤和底泥重金属铊污染特征及健康风险评估. 有色金属(冶炼部分). 2023(04): 140-147 .
    10. 郑煜,罗杨,吴永贵,彭小裕,伍建业,彭子乐,罗鉴. 肠道微生物对蔬菜中铬生物可给性的影响及人体健康风险评价. 环境化学. 2023(04): 1097-1108 .
    11. 郭志娟,刘飞,周亚龙,王乔林,王成文. 雄安新区土壤氟地球化学特征及健康风险评价. 环境科学. 2023(08): 4397-4405 .
    12. 马杰,佘泽蕾,王胜蓝,邓力,孙静,刘萍,徐敏. 重庆市煤矸山周边农产品镉健康风险评价及土壤环境基准值推导. 环境科学. 2023(09): 5264-5274 .
    13. 马杰,佘泽蕾,王胜蓝,邓力,刘萍,孙静. 基于蒙特卡罗模拟的煤矸山周边农用地土壤重金属健康风险评估. 环境科学. 2023(10): 5666-5678 .
    14. 程全国,王浩东,李晔,高悦. 基于蒙特卡罗模拟的辽宁省某化工园区及周边地下水PAHs健康风险评价. 沈阳大学学报(自然科学版). 2022(03): 175-182 .
    15. 栗钰洁,王贝贝,曹素珍,高菲,张力文,段小丽. 基于PMF的土壤多环芳烃致癌风险定量源解析方法研究:以太原市为例. 环境科学研究. 2022(08): 1996-2005 .
    16. 石文静,周翰鹏,孙涛,黄金涛,杨文焕,李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究. 生态环境学报. 2022(08): 1616-1628 .
    17. 张怡萍,王哲,张振龙,罗莹,曾秋平,贾文静,王振雨,张家千,冯喜杨,黄凤羽,易发成. 基于蒙特卡洛模拟的土壤健康风险评价——以攀枝花某矿区小流域为例. 化工矿物与加工. 2022(12): 30-36+45 .
    18. 徐文,朱士江,纪道斌,丁致玉,李虎,于颖,李凯凯. 基于Copula函数的区域氮代谢环境风险评价与分析:以北京市密云区为例. 环境科学与技术. 2022(12): 154-163 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(1) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return