Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Cheng, CHENG Jian, NIU Haobo, GONG Zhiqiang. DETERMINATION OF GROUNDWATER RISK CONTROL VALUE OF A POLLUTED LAND BASED ON NUMERICAL SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 159-164. doi: 10.13205/j.hjgc.202211022
Citation: WANG Cheng, CHENG Jian, NIU Haobo, GONG Zhiqiang. DETERMINATION OF GROUNDWATER RISK CONTROL VALUE OF A POLLUTED LAND BASED ON NUMERICAL SIMULATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 159-164. doi: 10.13205/j.hjgc.202211022

DETERMINATION OF GROUNDWATER RISK CONTROL VALUE OF A POLLUTED LAND BASED ON NUMERICAL SIMULATION

doi: 10.13205/j.hjgc.202211022
  • Received Date: 2021-12-20
    Available Online: 2023-03-24
  • Aiming at the difficult problems of determining the target value of groundwater risk management and control, this article took an abandoned ferroalloy plant as the research object, and discussed the environmental impact of hexavalent chromium pollution in groundwater on the downstream sensitive target rivers. Numerical simulation methods were used to determine the pollution under hydraulic interception conditions, the target value of groundwater risk management and control of the plot. The results showed that:under natural conditions, after 2500 days, the pollution plume with hexavalent chromium concentration greater than 0.5 mg/L will migrate to the river; under hydraulic interception condition, when the hydraulic interception of the hexavalent chromium concentration was above 10 mg/L of the pollution plume, the highest concentration of hexavalent chromium discharged to the river was 0.46 mg/L, achieving the purpose of groundwater risk management and control. It's finally determined that the groundwater risk control value of this site was 10 mg/L, which reduced the area of groundwater risk control by about 9.45 m2 and saved the cost of sewage treatment. This study provides support for determining the target value of groundwater risk management and control, and preparation of groundwater remediation plans for contaminated land in China.
  • [1]
    靳超,左锐,王金生,等.傍河污染场地地下水修复技术筛选[J].北京师范大学学报(自然科学版),2017,53(6):689-697.
    [2]
    罗思东.美国城市的棕色地块及其治理[J].城市问题,2002(6):64-67.
    [3]
    EELL A, ANDERSSON-SKOLD Y, VESTIN J, et al. Risk management and regeneration of brown fields using bioenergy crops[J]. Journal of Soil & Sediments,2016,16(3):987-1000.
    [4]
    陈梦舫.我国工业污染场地土壤与地下水重金属修复技术综述[J].中国科学院院刊,2014,29(3):327-335.
    [5]
    李元杰,任婷,张雪,等.污染场地基于风险管控下的管理与修复方法研究[C]//2017中国环境科学学会科学与技术年会,中国福建厦门,2017.
    [6]
    中华人民共和国生态环境部.污染地块地下水修复和风险管控技术导则:HJ 25.6-2019[S].北京:中国标准出版社,2019.
    [7]
    谢雨呈,谭长银,张朝,等.典型肥料生产场地氨氮分布特征及风险控制目标确定[J].环境科学研究,2019,32(3):465-474.
    [8]
    牛浩博.氯代烃污染场地地下水抽出-处理方案优化:以山东某小化工厂污染场地为例[D].北京:中国地质大学,2018.
    [9]
    EPAUS. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites[S]. Washington DC:U.S.EPA, Office of Solid Waste and Emergency Response,1999.
    [10]
    吴玉成.治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998,25(1):30-32.
    [11]
    郭华明,王焰新.地下水有机污染治理技术现状及发展前景[J].地质科技情报,1999,18(2):70-73.
    [12]
    徐绍辉,朱学愚.地下水石油污染治理的水力截获技术及数值模拟[J].水利学报,1999(1):71-76.
    [13]
    GORELICK S M, VOSS C I, GILL P E, et al. Aquifer reclamation design:the use of contaminant transport simulation combined with nonlinear programing[J].Water Resources Research,1984,20(4):415-427.
    [14]
    TRAVIS C, DOTY C.Can contaminated aquifers at superfund sites be remediated[J].Environmental Science & Technology,1990,24(10):1464-1466.
    [15]
    TAGUCHI T, YOKOTA T, GEN M. Reliability optimal design problem with interval coefficients using Hybrid Genetic Algorithms[J].Computers & Industrial Engineering,1998,35(1/2):373-376.
    [16]
    肖再亮,王飞,洒永芳,等.基于数值模拟的某临河工业固体废物渣场地下水污染控制研究[J].水资源与水工程学报,2019,30(2):95-99.
    [17]
    JAVANDEL I, TSANG C. Capture-zone type curves:a tool for aquifer cleanup[J].Ground Water,2010,24(5):616-625.
    [18]
    张人权,梁杏,靳孟贵,等.水文地质学基础[M]. 6版.北京:地质出版社,2011.
    [19]
    张佳.某铬污染场地原位淋洗水力截获修复数值模拟研究[D].北京:中国地质大学(北京),2015.
    [20]
    郇环,王金生.水力截获技术研究进展[J].环境污染与防治,2011,33(3):83-87.
    [21]
    宫志强,陈坚,杨鑫鑫,等.某铬污染场地地下水抽水方案优化[J].环境工程,2019,37(5):1-3.
    [22]
    宫志强,刘明柱,刘伟江,等.单井捕获地下水污染羽优化方法[J].环境工程学报,2019,13(10):2468-2474.
  • Relative Articles

    [1]LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019
    [2]YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023
    [3]LI Dou, WANG Yan, LIU Ruhai, SUN Haolin, YIN Pingping, ZHOU Xuyuan, MO Bing, LI Dongting. TEMPORAL VARIATION, SOURCE ANALYSIS AND ENVIRONMENTAL EFFECTS OF WATER-SOLUBLE IONS IN TSP IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 109-116,126. doi: 10.13205/j.hjgc.202308014
    [4]DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003
    [5]DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014
    [6]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
  • Cited by

    Periodical cited type(5)

    1. 蒋军成,胡政. 燃煤电站中锅炉燃烧烟气余热节能分析. 能源与环保. 2023(02): 173-179 .
    2. 李新强,赖志强,艾华,刘健,刘维鸽. 炼钢厂热泼渣废气白雾治理及水分回收系统. 重型机械. 2022(03): 32-35 .
    3. 吴剑恒. “双碳”目标下燃煤背压机组锅炉烟气余热深度利用研究. 电力学报. 2022(05): 384-421 .
    4. 梅欢. 直接换热烟气提水技术及其工程应用. 电力科技与环保. 2021(02): 16-21 .
    5. 刘舒巍,李红飞,舒斌,靳超然. 氟塑料的改性及其在换热器领域的应用研究进展. 化工管理. 2019(13): 103-104 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.8 %META: 82.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.7 %其他: 20.7 %其他: 1.1 %其他: 1.1 %东莞: 1.1 %东莞: 1.1 %北京: 3.4 %北京: 3.4 %台州: 5.7 %台州: 5.7 %呼和浩特: 2.3 %呼和浩特: 2.3 %扬州: 1.1 %扬州: 1.1 %杭州: 5.7 %杭州: 5.7 %湖州: 1.1 %湖州: 1.1 %漯河: 2.3 %漯河: 2.3 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 31.0 %芒廷维尤: 31.0 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %衢州: 1.1 %衢州: 1.1 %西宁: 16.1 %西宁: 16.1 %邯郸: 1.1 %邯郸: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 1.1 %长春: 1.1 %其他其他东莞北京台州呼和浩特扬州杭州湖州漯河漳州芒廷维尤芝加哥苏州衢州西宁邯郸重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (190) PDF downloads(6) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return