Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 40 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024
Citation: SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024

NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION

doi: 10.13205/j.hjgc.202211024
  • Received Date: 2021-12-17
    Available Online: 2023-03-24
  • The denitrification technology using ozone oxidation combined with wet absorption can be used in the purification of flue gas with relatively low temperature (<150℃) and NOx concentration (<400 mg/m3), such as the flue gas from steel sintering, coke oven and ceramics industries. The technology has the advantages of higher SO2 and NOx removal efficiency, simpler equipment, relatively lower construction and operation cost. The physicochemical behaviors of ozone oxidation combined with the liquid phase absorption denitrification process was firstly analyzed. The distribution of nitrogen products from both gas-phase NO oxidation and gas-phase oxidation combined with wet absorption were investigated by Fourier infrared spectroscopy and ion chromatography, and the nitrogen conversion was calculated. The results showed that the O3/NO molar ratio and water solubility were the key factors affecting the degree of NO oxidation and NOx removal efficiency. When the O3/NO molar ratio was higher than 1.5, NO oxidation products were mainly N2O5 and HNO3, and their water solubility was equivalent to SO2. Thus, NOx could be effectively removed in the traditional desulfurization absorber, and the product was NO3- with good stability. The nitrogen conversion rate was close to 99%, and the undetectable nitrogen components could be ignored or never exist.
  • loading
  • [1]
    朱法华, 张静怡, 徐振. 我国工业烟气治理现状、困境及建议[J]. 中国环保产业, 2020(10):13-16.
    [2]
    田恬, 程茜, 赵雪, 等. 2019年脱硫脱硝行业发展评述及展望[J].中国环保产业, 2020(2):23-25,28.
    [3]
    王新东, 侯长江, 田京雷. 钢铁行业烟气多污染物协同控制技术应用实践[J]. 过程工程学报, 2020, 20(9):997-1007.
    [4]
    GUO Y Y, LI YR, ZHU T Y, et al. Effects of concentration and adsorption product on the adsorption of SO2 and NO on activated carbon[J]. Energy & Fuels, 2013, 27(1):360-366.
    [5]
    侯长江, 田京雷, 王倩. 臭氧氧化脱硝技术在烧结烟气中的应用[J]. 河北冶金, 2019(3):67-70.
    [6]
    SI M, SHEN B X, ADWEK G, et al. Review on the NO removal from flue gas by oxidation methods[J]. Journal of Environmental Sciences, 2021, 101(3):49-71.
    [7]
    WANG Y, ZHU T L, WANG H. Oxidation and removal of NO from flue gas by DC corona discharge combined with alkaline absorption[J]. IEEE Transaction on Plasma Science, 2011, 39(2):704-710.
    [8]
    LI Y, CHE D F, YANG C L, et al. Engineering practice and economic analysis of ozone oxidation wet denitrification technology[J]. Chinese Journal of Chemical Engineering, 2021, 29(1):401-408.
    [9]
    CHASE J R W. NIST-JANAF thermochemical tables fourth edition[J]. Journal of Physical and Chemical Reference Data Monograph, 1998, 9:1-1951.
    [10]
    J. A. Dean. 兰氏化学手册[M].15版. 北京:科学出版社, 2003.
    [11]
    LIPPMANN H H, JESSER B, SCHURATH U. The rate constant of NO+O3→NO2+O2 in the temperature range of 283-443 K[J]. International Journal of Chemical Kinetics, 1980, 12(8):547-554.
    [12]
    ATKINSON R, BAULCH D L, COX R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry:supplement Ⅳ:IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry[J]. Atmospheric Environment, 1996, 30(22):3903-3904.
    [13]
    JI R J, WANG J, XU W Q, et al. Study on the key factors of NO oxidation using O3:the oxidation product composition and oxidation selectivity[J]. Industrial & Engineering Chemistry Research, 2018, 57:14440-14447.
    [14]
    夏青, 陈常贵.《化工原理(下)》[M]. 天津:天津大学出版社, 2008, 93-95.
    [15]
    SANDER R. NIST chemistry webbook, SRD 69[DB/OL]. https://webbook.nist.gov/cgi/cbook.cgi?ID=C7446095&Units=SI&Mask=10#Solubility.
    [16]
    SUN C L, ZHAO N, ZHUANG Z K, et al.Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements[J]. Journal of Hazardous materials, 2014, 274(12):376-383.
    [17]
    JI R J, WANG J, XU W Q, et al. Study on the key factors of NO oxidation using O3:the oxidation product composition and oxidation selectivity[J]. Industrial & Engineering Chemistry Research, 2018, 57, 14440-14447.
    [18]
    GUO S P, LV L N, ZHANG J, et al. Simultaneous removal of SO2 and NOx with ammonia combined with gas-phase oxidation of NO using ozone[J]. Chemical Industry & Chemical Engineering Quarterly, 2015, 21(2):305-310.
    [19]
    ZHANG J, ZHANG R, CHEN X, et al. Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption[J]. Industrial & Engineering Chemistry Research, 2014, 53(15):6450-6456.
    [20]
    SUN B C, SHENG M P, GAO W L, et al. Absorption of nitrogen oxides into sodium hydroxide solution in a rotating packed bed with pre-oxidation by ozone[J]. Energy & Fuels, 2017, 31(10):11019-11025.
    [21]
    SUN W Y, DING S L, ZENG S S, et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone[J]. Journal of Hazardous materials, 2011, 192(1):124-130.
    [22]
    SUN C L, ZHAO N, WANG H Q, et al. Simultaneous absorption of NOx and SO2 using magnesia slurry combined with ozone oxidation[J]. Energy & Fuels, 2015, 29(5):3276-3283.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return