Citation: | WANG Jiaqi, DAI Chengna, YU Gangqiang, WU Bin, LIU Ning, XU Ruinian, WANG Ning, CHEN Biaohua. TECHNO-ENVIRONMENTAL ASSESSMENT IN NATURAL GAS DEHYDRATION WITH IMIDAZOLIUM-BASED IONIC LIQUIDS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 199-210. doi: 10.13205/j.hjgc.202211028 |
[1] |
HAQUE M E, XU Q, PALANKI S. Glycol loss minimization for a natural gas dehydration plant under upset conditions[J]. Industrial & Engineering Chemistry Research, 2019, 58(5):1994-2008.
|
[2] |
SAKHETA A, ZAHID U. Process simulation of dehydration unit for the comparative analysis of natural gas processing and carbon capture application[J]. Chemical Engineering Research and Design, 2018, 137:75-88.
|
[3] |
RADAKOVITSCH F R, JESS A. Gas dehydration using the ionic liquid[EMIM][MeSO3] supported on silica gel-structural and water vapor sorption properties[J]. Chemical Engineering Journal, 2020, 398:124689.
|
[4] |
ANDREASEN A, ROMERO I, MASCHIETTI M. Validation of an equilibrium-stage model of the coldfinger water exhauster for enhanced glycol regeneration in natural gas dehydration[J]. Industrial & Engineering Chemistry Research, 2020, 59(44):19668-19679.
|
[5] |
WANG J W, CHENG H Y, SONG Z, et al. Carbon dioxide solubility in phosphonium-based deep eutectic solvents:an experimental and molecular dynamics study[J]. Industrial & Engineering Chemistry Research, 2019, 58(37):17514-17523.
|
[6] |
WANG J W, SONG Z, CHENG H Y, et al. Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas[J]. Separation and Purification Technology, 2020, 248:117053.
|
[7] |
SONG Z, SHI H W, ZHANG X, et al. Prediction of CO2 solubility in ionic liquids using machine learning methods[J]. Chemical Engineering Science, 2020, 223:115752.
|
[8] |
YU G Q, DAI C N, WU B, et al. Chlorine drying with hygroscopic ionic liquids[J]. Green Energy & Environment, 2021, 6(3):350-362.
|
[9] |
ZENG S J, ZHANG X P, BAI L, et al. Ionic-liquid-based CO2 capture systems:structure, interaction and process[J]. Chemical Reviews, 2017, 117(14):9625-9673.
|
[10] |
SONG Z, LI X X, CHAO H, et al. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process[J]. Green Energy & Environment, 2019, 4(2):154-165.
|
[11] |
CAO Y K, ZHANG X P, ZENG S J, et al. Protic ionic liquid-based deep eutectic solvents with multiple hydrogen bonding sites for efficient absorption of NH3[J]. AIChE Journal, 2020, 66(8):e16253.
|
[12] |
CHEN F F, HUANG K, FAN J P, et al. Chemical solvent in chemical solvent:a class of hybrid materials for effective capture of CO2[J]. AIChE Journal, 2018, 64(2):632-639.
|
[13] |
LIU F J, HUANG K, JIANG L L. Promoted adsorption of CO2 on amine-impregnated adsorbents by functionalized ionic liquids[J]. AIChE Journal, 2018, 64(10):3671-3680.
|
[14] |
LIU X Y, CHEN Y Q, ZENG S J, et al. Structure optimization of tailored ionic liquids and process simulation for shale gas separation[J]. AIChE Journal, 2020, 66(2):e16794.
|
[15] |
WANG J W, SONG Z, CHENG H Y, et al. Computer-aided design of ionic liquids as absorbent for gas separation exemplified by CO2 capture cases[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9):12025-12035.
|
[16] |
ZHANG W X, LIU X B, ZHANG H R, et al. Molecular dynamics evaluation of removal of acid gases from SNG by ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:18093-18104.
|
[17] |
YU G Q, DAI C N, WU L, et al. Natural gas dehydration with ionic liquids[J]. Energy & Fuels, 2017, 31(2):1429-1439.
|
[18] |
YU G Q, DAI C W, LEI Z G. Modified UNIFAC-Lei model for ionic liquid-CH4 systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(20):7064-7076.
|
[19] |
BARBOSA L C, ARAÚJO O D Q F, DE MEDEIROS J L. Carbon capture and adjustment of water and hydrocarbon dew-points via absorption with ionic liquid[Bmim][NTf2] in offshore processing of CO2-rich natural gas[J]. Journal of Natural Gas Science and Engineering, 2019, 66:26-41.
|
[20] |
GONFA G, BUSTAM M A, SHARIF A M, et al. Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology[J]. Journal of Natural Gas Science and Engineering, 2015, 27:1141-1148.
|
[21] |
GONFA G, BUSTAM M A, SHARIFF A M, et al. Quantitative structure-activity relationships (QSARs) for estimation of activity coefficient at infinite dilution of water in ionic liquids for natural gas dehydration[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66:222-229.
|
[22] |
JIANG Y F, TAHERI M, YU G Q, et al. Experiments, modeling, and simulation of CO2 dehydration by ionic liquid, triethylene glycol, and their binary mixtures[J]. Industrial & Engineering Chemistry Research, 2019, 58(34):15588-15597.
|
[23] |
任旭华,周翔,王宏达,等.一种除去弱吸水性离子液体中微量水分的方法及系统:中国,111203004[P].2020-01-10.
|
[24] |
CAPELLO C, FISCHER U, HUNGERBVHLER K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents[J]. Green Chemistry, 2007, 9(9):927-934.
|
[25] |
WU B, DAI C N, CHEN B H, et al. Ionic liquid versus traditional volatile organic solvent in the natural gas dehydration process:a comparison from a life cycle perspective[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23):19194-19201.
|
[26] |
KRALISCH D, OTT D, GERICKE D. Rules and benefits of life cycle assessment in green chemical process and synthesis design:a tutorial review[J]. Green chemistry, 2015, 17(1):123-145.
|
[27] |
RANKE J, STOLTE S, STORMANN R, et al. Design of sustainable chemical products-the example of ionic liquids[J]. Chemical Reviews, 2007, 107(6):2183-2206.
|
[28] |
MACIEL V G, WALES D J, SEFERIN M, et al. State-of-the-art and limitations in the life cycle assessment of ionic liquids[J]. J Clean Prod, 2019, 217:844-858.
|
[29] |
WANG S, SANDLER S I, CHEN C C. Refinement of COSMO-SAC and the applications[J]. Industrial & Engineering Chemistry Research, 2007, 46(22):7275-7288.
|
[30] |
FRISCHKNECHT R, JUNGBLUTH N, ALTHAUS H J, et al. The ecoinvent database:overview and methodological framework (7 pp)[J]. The International Journal of Life Cycle Assessment, 2004, 10(1):3-9.
|
[31] |
AMADO ALVIZ P L, ALVAREZ A J. Comparative life cycle assessment of the use of an ionic liquid ([Bmim] Br) versus a volatile organic solvent in the production of acetylsalicylic acid[J]. J Clean Prod, 2017, 168:1614-1624.
|
[32] |
SHEKAARI H, ZAFARANI-MOATTAR M T, MIRHEYDARI S N. Thermodynamic study of aspirin in the presence of ionic liquid, 1-hexyl-3-methylimidazolium bromide in acetonitrile at T=(288.15 to 318.15) K[J]. Journal of Molecular Liquids, 2015, 209:138-148.
|
[33] |
MEHRKESH A, KARUNANITHI A T. Life-cycle perspectives on aquatic ecotoxicity of common ionic liquids[J]. Environmental Science & Technology, 2016, 50(13):6814-6821.
|
[34] |
康勇,李杰.一种聚乙二醇链连接的双阳离子离子液体、制备方法及SO2气体的捕集方法:中国,110734404[P].2018-07-20.
|
[35] |
胡玉林,李精锐,陈卫丰,等.负载型咪唑离子液体催化剂及合成2-氨基3-氰基-4H-吡喃类化合物的方法:中国,111229311[P].2020-03-08.
|
[36] |
CUELLAR-FRANCA R M, GARCIA-GUTIERREZ P, Taylor S F, et al. A novel methodology for assessing the environmental sustainability of ionic liquids used for CO2 capture[J]. Faraday Discuss, 2016, 192:283-301.
|
[37] |
王平,徐群,滕英华.溴化1-辛基-3-甲基眯唑离子液体的制备[J].化工时刊,2010,24(4):49-51.
|
[38] |
李斌栋.微反应器内连续合成溴代正辛烷方法:中国,110655445[P].2018-06-29.
|
[39] |
PETERSON J E. Ionic liquid/CO2 CO-fluid refrigeration:CO2 solubility modeling and life cycle analysis[D]. South Bend:The University of Notre Dame, 2013.
|
[40] |
RIGHI S, MORFINO A, GALLETTI P, et al. Comparative cradle-to-gate life cycle assessments of cellulose dissolution with 1-butyl-3-methylimidazolium chloride and N-methyl-morpholine-N-oxide[J]. Green Chem, 2011, 13(2):367-375.
|
[41] |
ZHANG Y, BAKSHI B R, DEMESSIE E S. Life cycle assessment of an ionic liquid versus molecular solvents and their applications[J]. Environmental Science & Technology, 2008, 42(5):1724-1730.
|
[1] | JIN Hongqi, JIANG Rongjie, WANG Zirui, LI Luyang, LUO Jingyang. RESEARCH PROGRESS ON IMPACT AND REGULATION STRATEGIES OF TYPICAL ANTIBIOTICS ON ANAEROBIC DIGESTION EFFICIENCY OF SLUDGE: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 49-59. doi: 10.13205/j.hjgc.202407005 |
[2] | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[3] | ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012 |
[4] | GENG Ziqian, DAI Wenting, LI Chao, TANG Jie, DAI Kun, CENG Jianxiong, ZHANG Fang. ENHANCED METHANOGENESIS OF WASTE ACTIVATED SLUDGE FERMENTATION BY DOSING AN ALGINATE-DEGRADING CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 90-95. doi: 10.13205/j.hjgc.202208012 |
[5] | DU Minghui, BI Yingying, DONG Li, WANG Yong, SUN Xiaoming. INFLUENCE MECHANISM OF ACTIVATED CARBON PARTICLE SIZE ON O3-AC TREATMENT OF ORGANIC WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 22-28. doi: 10.13205/j.hjgc.202204004 |
[6] | WANG Xu-dong, LI Xian-guo, ZHANG Hai-qing, PAN Kang-hong, ZHANG Da-hai. EFFECT OF MEDIUM AND HIGH MOLECULAR WEIGHT POLYACRYLAMIDE ON PERFORMANCE OF SLUDGE ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 82-87. doi: 10.13205/j.hjgc.202205012 |
[7] | XIANG Yinping, XIONG Weiping, ZHANG Yanru, JIA Meiying, PENG Haihao, YANG Zhaohui. EFFECT OF SLUDGE ANAEROBIC DIGESTION ON THE REDUCTION OF ANTIBIOTIC RESISTANCE GENES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 192-202,241. doi: 10.13205/j.hjgc.202210026 |
[8] | TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031 |
[9] | CHEN Si-yuan, XIAO Xiang-zhe, TENG Jun, DONG Shan-yan, LIAN Jun-feng, ZHU Yi-chun. RESEARCH PROGRESS ON METHANOGENIC INHIBITION TECHNOLOGY DURING ANAEROBIC DIGESTION OF EXCESS SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 137-143. doi: 10.13205/j.hjgc.202106020 |
[10] | JING Xue, CHENG Jie-hong, KONG Feng, ZHANG Chun-yong, CHENG Qing-lin, HUANG Shou-qiang. EFFECT OF ADDED IRON ON ANAEROBIC DIGESTION PROCESS OF MUNICIPAL SLUDGE IN METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 125-130. doi: 10.13205/j.hjgc.202102020 |
[11] | KONG Zhe, WU Jiang, RONG Chao, WANG Tian-jie, LI Lu, HUANG Yong, LI Yu-you. OPERATION PERFORMANCE AND MASS BALANCE OF A LARGE PILOT-SCALE ANAEROBIC MEMBRANE BIOREACTOR(AnMBR) FOR MUNICIPAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 94-100. doi: 10.13205/j.hjgc.202107011 |
[12] | WANG Qing-peng, YANG Zhao-hui, XU Rui, ZHANG Yan-ru, CAO Jiao. EFFECT OF NZVI ON ANAEROBIC DIGESTION SYSTEM WITH LOW ORGANIC SLUDGE AND ITS MICROBIAL COMMUNITY DIVERSITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 31-37,54. doi: 10.13205/j.hjgc.202105005 |
[13] | ZHANG Jia-hui, GONG You-kui. START-UP OF SBR-PN PROCESS AND N2O EMISSION IN SIDE PRETREATMENT OF WASTED SLUDGE BY FREE NITROUS ACID[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 72-78. doi: 10.13205/j.hjgc.202106012 |
[14] | GUO Guang-ze, LI Ye-mei, ZHOU Shi-tong, LI Yu-you. ANAEROBIC DIGESTION OF SEWAGE SLUDGE BY A HIGH SOLID MESOPHILIC ANAEROBIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 101-107. doi: 10.13205/j.hjgc.202107012 |
[15] | DENG Qing-hua, ZHANG Jian, XIAN-Ping, FANG Qing, MENG Zheng-cheng. IMPROVING ANAEROBIC DIGESTIBILITY OF SLUDGE PRETREATED BY THERMAL HYDROLYSIS AND BANANA STRAW ADDED[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 144-149. doi: 10.13205/j.hjgc.202005025 |
[16] | ZHOU Yu-han, PAN Yang, ZHANG Rui-liang, ZHENG Chao-ting, ZHI Zhong-xiang, ZHEN Guang-yin. EFFECT OF ACID-ALKALI MICROWAVE COMBINED PRETREATMENT ON RUPTURE OF SLUDGE EXTRACELLULAR POLYMERIC SUBSTANCES AND METHANE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 19-25,31. doi: 10.13205/j.hjgc.202012004 |
[17] | MA Da-chao, GAO Wei-kang, SUN Xiang, LIU Zheng, HUANG Yi-qian, HAN Biao. CHARACTERISTICS AND KINETICS OF CO-PYROLYSIS OF RICE HUSK AND PVC[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 135-140. doi: 10.13205/j.hjgc.202001021 |
[18] | ZHAO Jia-qi, FAN Xiao-dan, QIU Chun-sheng, WANG Chen-chen, LIU Nan-nan, WANG Dong, WANG Shao-po, SUN Li-ping. ANALYSIS ON DIFFICULTY AND CONTROL STRATEGY OF ANAEROBIC DIGESTION TREATMENT OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 143-148. doi: 10.13205/j.hjgc.202012024 |
[19] | Li Xiaodong Liu Ran Guo Feng Zhang Wei Chao Lei, . EFFECT OF DRY-WET RATIO ON REMOVAL EFFICIENCY OF SANDY SOIL SUBSURFACE INFILTRATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 49-52. doi: 10.13205/j.hjgc.201501012 |
[20] | Li Wei Liang Meisheng Pei Xuqian Jiang Junjie, . RESEARCH ON APPLICATION OF PULSED ELECTRIC FIELD IN ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 106-109. doi: 10.13205/j.hjgc.201503022 |
1. | 王新新,于欣卉,马厚龙,黄思思,刘金力,毕少杰,王彦杰. 水力停留时间对牛粪和白菜尾菜混合厌氧发酵的影响. 黑龙江八一农垦大学学报. 2024(03): 72-79 . ![]() | |
2. | 刘壮壮,唐玉朝,伍昌年,王坤,陈徐庆,刘俊,张彬彬. 球磨热碱耦合法破解污泥-释放碳源及污泥减量化的效率. 环境工程学报. 2023(01): 332-342 . ![]() | |
3. | 任雨晴,吴炜,魏海娟,周斌,幸韵欣,何侃侃,周振. 聚丙烯酰胺性质和结构对厌氧消化前后污泥调理脱水效果的影响. 环境工程. 2023(08): 57-64 . ![]() |