Citation: | ZHANG Zekun, WAN Dan, XU Hao, YAN Wei, JIN Xiaoliang. RESEARCH STATUS AND DEVELOPING TREND OF ELECTRO-CATALYTIC REDUCTION OF CO2 BASED ON BIBLIOMETRIC[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 222-230. doi: 10.13205/j.hjgc.202211030 |
[1] |
SU Y, YU Y N, ZHANG N, et al. Carbon emissions and environmental management based on big data and streaming data:a bibliometric analysis[J]. Science of the Total Environment, 2020, 733:138984.
|
[2] |
严刚, 郑逸璇, 王雪松, 等. 基于重点行业/领域的我国碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):309-319.
|
[3] |
刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(3):1-8.
|
[4] |
SEH Z W, KIBSGAARD J, DICKENS C, et al. Combining theory and experiment in electrocatalysis:insights into materials design[J]. Science, 2017, 355(6321):eaad4998.
|
[5] |
ALBO J, ALVAREZ-GUERRA M, CASTAÑO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol[J]. Green Chemistry, 2015, 17(4):2304-2324.
|
[6] |
APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8):6621-6658.
|
[7] |
OLAH G A, PRAKASH G, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. Journal of the American Chemical Society, 2011, 133(33):12881-12898.
|
[8] |
JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(5):2165-2177.
|
[9] |
LI F W, THEVENON A, ROSAS-HERNÁNDEZ A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577(7791):509-513.
|
[10] |
ARQUER F, DINH C T, OZDEN A, et al. CO2 electrolysis to multicarbon products at activitiesgreater than 1 A/cm2[J]. Science, 2020, 367(6478):661-666.
|
[11] |
WHITE H D, GRIFFITH B C. Author cocitation:a literature measure of intellectual structure[J]. Journal of the American Society for Information Science, 1981, 32(3):153-172.
|
[12] |
邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003, 21(2):143-148.
|
[13] |
JIMÉNEZ-GARCÍA M, RUIZ-CHICO J, PEÑA-SÁNCHEZ A R, et al. A bibliometric analysis of sports tourism and sustainability (2002-2019)[J]. Sustainability, 2020, 12(7):2840.
|
[14] |
王永林, 张传合, 赵宇鹏, 等. 基于Web of Science数据库的土壤生物修复研究趋势分析[J]. 环境工程, 2021, 39(9):199-204.
|
[15] |
ECK N, WALTMAN L. Software survey:VOS viewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538.
|
[16] |
胡旭,江涵,张锐.沙特能源转型及氢能发展展望[J].储能科学与技术,2022,11(7):2354-2365.
|
[17] |
刘辰, 马鸾宇. 沙特阿拉伯新能源政策研究[J]. 长春师范大学学报, 2021,40(3):63-68.
|
[18] |
ALHEJI A K B. 沙特阿拉伯王国生态城建设体系研究[D]. 天津:天津大学, 2019.
|
[19] |
梅德文, 葛兴安, 邵诗洋. 自愿减排交易助力实现"双碳"目标[J]. 清华金融评论, 2021(10):56-59.
|
[20] |
任孝平, 杨云, 周小林, 等. 2006-2015年国内科研机构国际合作现状研究[J]. 情报工程, 2019, 5(4):70-78.
|
[21] |
PURVIS B, MAO Y, ROBINSON D. Three pillars of sustainability:in search of conceptual origins[J]. Sustainability science, 2019, 14(3):681-695.
|
[22] |
BAILÓN-MORENO R, JURADO-ALAMEDA E, RUIZ-BAÑOS R, et al. The unified scientometric model. Fractality and transfractality[J]. Scientometrics, 2005, 63(2):231-257.
|
[23] |
魏明坤. 基于h指数修正的学者历时影响力研究[J]. 现代情报, 2021, 41(1):152-157.
|
[24] |
CALLON M, COURTIAL J P, TURNER W A, et al. From translations to problematic networks:an introduction to co-word analysis[J]. Social Science Information, 1983, 22(2):191-235.
|
[25] |
MISTRY H, VARELA A S, KVHL S, et al. Nanostructured electrocatalysts with tunable activity and selectivity[J]. Nature Reviews Materials, 2016, 1(4):16009.
|
[26] |
WANG L M, CHEN W L, ZHANG D D, et al. Surface strategies for catalytic CO2 reduction:from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 21(48):5310-5349.
|
[27] |
董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6):2492-2509.
|
[28] |
穆春辉, 张艺馨, 寇伟, 等. 镍氮掺杂有序大孔/介孔碳负载银纳米颗粒用于高效电催化CO2还原[J]. 化学学报, 2021, 79(7):925-931.
|
[29] |
WANG X W, SUN G Z, ROUTH P, et al. Heteroatom-doped graphene materials:syntheses, properties and applications[J]. Chemical Society Reviews, 2014, 43(20):7067-7098.
|
[30] |
HE J F, JOHNSON N, HUANG A X, et al. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018, 11(1):48-57.
|
[31] |
于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4):1815-1824.
|
[32] |
KUHL K, CAVE E, ABRAM D, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5:7050-7059.
|
[33] |
ITO Y, KUKUNURI S, JEONG S, et al. Phase-dependent electrochemical CO2 reduction ability of NiSn alloys for formate generation[J]. ACS Applied Energy Materials, 2021, 4(7):7122-7128.
|
[34] |
苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3):1384-1394.
|
[35] |
CLARK E L, HAHN C, JARAMILLO T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44):15848.
|
[36] |
HAMMER B, MORIKAWA Y, NØRSKOV J K. CO chemisorption at metal surfaces and overlayers[J]. Physical Review Letters, 1996, 76(12):2141-2144.
|
[37] |
LUDWIG A, KIBLER, AHMED M, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14):2080-2084.
|
[38] |
SANDBERG R B, MONTOYA J H, CHAN K, et al. CO-CO coupling on Cu facets:coverage, strain and field effects[J]. Surface Science, 2016, 654:56-62.
|
[39] |
KIM J J, SUMMERS D P, FRESE K W. Reduction of CO2 and CO to methane on Cu foil electrodes[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1988, 245(1/2):223-244.
|
[40] |
ISMAIL A M, SAMU G F, BALOG A, et al. Composition dependent electrocatalytic behavior of Au-Sn bimetallic nanoparticles in carbon dioxide reduction[J]. ACS Energy Letters, 2018, 4(1):48-53.
|
[41] |
HE J F, DETTELBACH K E, HUANG A X, et al. Brass and bronze as effective CO2 reduction electrocatalysts[J]. Angewandte Chemie, 2017, 129(52):16579.
|
[42] |
HANDOKO A D, WEI F X, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12):922-934.
|
[43] |
WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4):910-918.
|
[44] |
CAI F, GAO D F, ZHOU H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 4(8):2569-2573.
|
[1] | LU Fanghai, CHAI Hongyun, HE Haijun, WEI Zhuangqiang, SHU Ya, CHEN Xiaohu, LONG Xianze. RESOURCE REUTILIZATION FOR PHOSPHOGYPSUM AND RED MUD THOUGH CO-TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019 |
[2] | LIU Junwu, CAI Jingju, FANG Yingchun, CAO Jingxiao, ZHU Jian, WANG Ping, JIANG Xiaxin, ZHU Shanshan, ZHANG Jinjin. SYNCHRONOUS REMOVAL OF MOISTURE AND ORGANIC POLLUTANTS IN DREDGING SEDIMENT BY ELECTRO-FENTON[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 76-81,108. doi: 10.13205/j.hjgc.202306011 |
[3] | WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011 |
[4] | GUO Li-heng, GUAN Xiao-hong, LIU Hui-ling, DAI Xiao-hu. RESEARCH PROGRESS ON HARMLESS AND RESOURCE UTILIZATION OF FERMENTATION RESIDUE OF STEROIDAL DRUGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 244-250. doi: 10.13205/j.hjgc.202205034 |
[5] | XIN Wen-cai, CHEN Meng, CHEN Yi-lin, CHEN Shi, FU Wei-liang, ZHANG Cheng-zhen, ZHANG Xu-kun. RESEARCH PROGRESS OF DRYING AND REDUCTION EQUIPMENT FOR HIGH-HUMIDITY AND HIGH-VISCOSITY SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 178-182. doi: 10.13205/j.hjgc.202103025 |
[6] | XIANG Hong-lin, JIANG Jian-guo, GAO Yu-chen, MENG Yuan, XU Yi-wen, AIKELAIMU Aihemaiti, JU Tong-yao, HAN Si-yu, GUO Yan-ran. EFFECT OF AIR-FLOW RATE ON BIO-DRYING OF ORGANIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 128-134. doi: 10.13205/j.hjgc.202002017 |
1. | 杨延梅,徐鸿飞,侯蒙蒙,杨金忠,黄启飞,杨玉飞. 西北地区水基岩屑污染特征及其铺垫道路环境风险评估. 环境污染与防治. 2025(02): 82-87 . ![]() | |
2. | 常利娜,沈川. 基于中国知网文献计量视角下固体废弃物的研究热点与发展趋势分析. 环境生态学. 2025(02): 139-147+158 . ![]() | |
3. | 孙峰,夏嵩,李惠,刘斯琪,徐炳科,谢倩雯,史春艳. 水基钻井岩屑样品快速消解测定六种重金属元素. 油气田环境保护. 2025(01): 39-44 . ![]() | |
4. | 李金雨,王新刚,亓秋燕,王宗金,奚家米,艾子涵,李彦君,王昊宇,辜超颖. 钻井法泥浆用于陕北榆林地区矿山生态修复资源化利用试验研究. 西北地质. 2025(02): 197-208 . ![]() | |
5. | 王兵,孙越,商佳俭,陶建,李爽,任宏洋. BAP/O_3复合氧化体系对SMP的降解性能. 环境工程学报. 2024(02): 335-342 . ![]() | |
6. | 曹智鹏,田相友,于丙鑫,马蒸钊,谢江浩. 海上废弃钻井岩屑淋洗污染实验研究. 当代化工. 2024(02): 372-375+380 . ![]() | |
7. | 周晓娟. 固体废物对土壤环境的污染分析与无害化处理技术研究. 环境科学与管理. 2024(04): 81-85 . ![]() | |
8. | 何焱,何鑫,唐庆,杨嵌,李世伟,余世杰. 水基钻井岩屑细集料取代率对水泥混凝土性能影响研究. 四川建筑科学研究. 2024(04): 56-62 . ![]() | |
9. | 张建甲,单通,宁阳,程超. 油气田钻井固(危)废处置与利用综合解决方案探讨. 资源节约与环保. 2024(07): 123-126+144 . ![]() | |
10. | 王菲,赵彤,杨金忠,刘宏博,杨玉飞. 聚磺岩屑和还原土中钡的毒性物质含量鉴别方法研究. 环境工程技术学报. 2024(06): 1969-1976+1945 . ![]() | |
11. | 周奇,姚光远,包为磊,孙英杰,黄启飞. 油气田开采钻井岩屑分类利用处置现状及环境管理. 环境工程技术学报. 2023(02): 785-792 . ![]() | |
12. | 孙显根,李碧峰,韩桂成. 节能环保下农村固体废弃物污染防治技术研究. 环境科学与管理. 2023(03): 55-60 . ![]() | |
13. | 湛峰,程全,刘慧敏,宋光明,诸林,孙勇,赵志越. 废弃水基钻井泥浆的固液分离研究——以四川蓬深X井为例. 天然气与石油. 2023(03): 95-102 . ![]() | |
14. | 唐雷,何瑜瑞,孙平贺,宋建恒,侯凯,胡凌云,黄兴海,冯德山. 基础工程废弃泥浆环境化学效应的实验研究. 环境工程. 2023(S2): 533-537 . ![]() | |
15. | 李凤娟,张存社,李小龙,孙培,邵国彪. 废弃水基泥浆处理技术研究进展. 精细与专用化学品. 2023(11): 26-28 . ![]() | |
16. | 徐贵勤,谢水祥,任雯,张明栋,潘莉芳,刘国宇,岳长涛,李松辉. 废弃聚磺钻井液固相资源化绿色处理剂. 石油钻采工艺. 2023(06): 683-689 . ![]() | |
17. | 张景红,王志民. 渤海地区海上平台钻采固废管理现状及建议. 资源节约与环保. 2022(08): 81-83 . ![]() | |
18. | 王心龙,孙平贺,赵明哲,邢世宽,冯德山,唐雷. 不同固结因素对废弃泥浆含水率及渗透性的影响. 环境工程. 2022(08): 84-89 . ![]() | |
19. | 刘莉,李诗雨,陆朝晖,田君竹,李昊宸. 页岩气油基岩屑处置及资源化利用方案比选. 中国矿业. 2022(10): 62-67 . ![]() |