Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YU Jin-tao, MA Xiao-yu, ZHANG Chang-bo. AN EFFICIENT SCREENING SYSTEM OF CLAY SOIL PARTICLES IN THE SOIL WASHING REMEDIATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 160-166. doi: 10.13205/j.hjgc.202106024
Citation: CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033

A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING

doi: 10.13205/j.hjgc.202211033
  • Received Date: 2021-10-19
    Available Online: 2023-03-24
  • Biofouling is a critical challenge in the membrane-based water treatment process. Biofilm formation is regulated by bacterial quorum sensing. Inhibition of quorum sensing is an emerging technology for membrane biofouling control. Mechanism of quorum sensing and research on biofilm formation involving quorum sensing was introduced in this work. By interfering with and blocking the circuits of cell-cell communication, expression of the target quorum-sensing-controlled gene can be prevented, and the specific group behavior of bacteria can be inhibited. Research on biofouling control of water treatment membranes based on quorum sensing and quorum quenching is reviewed. The application of quorum sensing inhibitors in membrane-based water treatment systems, and studies on the immobilization of inhibitors as well as membrane modification are overviewed. An outlook of future research on membrane biofouling control based on quorum sensing tactics is proposed.
  • [1]
    LIU C, WANG W J, YANG B, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane:from mechanisms to mitigation strategies[J]. Water Research, 2021, 195:116976.
    [2]
    BASSLER B L. Small talk:cell-to-cell communication in bacteria[J]. Cell, 2002, 109(4):421-424.
    [3]
    NEALSON K H, PLATT T, HASTINGS J W. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Journal of Bacteriology, 1970, 104(1):313-322.
    [4]
    FUUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2):269-275.
    [5]
    PARSEK M R, VAL D L, HANZELKA B L, et al. Acyl homoserine-lactone quorum-sensing signal generation[J]. Proceedings of the National Academy of Sciences, 1999, 96(8):4360-4365.
    [6]
    DICKSCHAT J S. Quorum sensing and bacterial biofilms[J]. Natural Product Reports, 2010, 27(3):343-369.
    [7]
    READING N C, SPERANDIO V. Quorum sensing:the many languages of bacteria[J]. FEMS Microbiol Lett, 2006, 254(1):1-11.
    [8]
    STURME M H J, KLEEREBEZEM M, NAKAYAMA J, et al. Cell to cell communication by autoinducing peptides in gram-positive bacteria[J]. Antonie Van Leeuwenhoek, 2002, 81(1/2/3/4):233-243.
    [9]
    欧兴坤,李文桂. 铜绿假单胞菌群体感应系统las/rhl蛋白的研制现状[J]. 中国病原生物学杂志,2021,16(8):988-990.
    [10]
    万佳宏,常佳伟,魏彦琴,等. 金黄色葡萄球菌Agr群体感应系统及其抗毒力治疗研究进展[J]. 中国病原生物学杂志,2020,15(1):115-118.
    [11]
    张莉萍,甄向凯,欧阳松应. 噬菌体群体感应系统及其分子机理研究进展[J]. 微生物学通报,2021,48(9):3261-3270.
    [12]
    CELIS M D, AGUIRRE-SERRANO L, BELDA I, et al. Acylase enzymes disrupting quorum sensing alter the transcriptome and phenotype of Pseudomonas aeruginosa, and the composition of bacterial biofilms from wastewater treatment plants[J]. Science of the Total Environment, 2021, 799:149401.
    [13]
    NAHAR S, JEONG H L, KIM Y, et al. Inhibitory effects of Flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli[J]. Food Research International, 2021, 147:110461.
    [14]
    PARSEK M R, GREENBERG E P. Sociomicrobiology:the connections between quorum sensing and biofilms[J]. Trends in Microbiology, 2005, 13(1):27-33.
    [15]
    PALUCH E, REWAK-SOROCZYŃSKA J, JEDRUSIK I, et al. Prevention of biofilm formation by quorum quenching[J]. Applied Microbiology and Biotechnology, 2020, 104(5):1871-1881.
    [16]
    DAVIES D G, PARSEK M R, PEARSON J P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280(5361):295-298.
    [17]
    MUKHERJEE S, MOUSTAFA D, SMITH C D, et al. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer[J]. PLOS Pathogens, 2017, 13(7):e1006504.
    [18]
    VUONG C, SAENZ H L, GÖTZ F, et al. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus[J]. The Journal of Infectious Diseases, 2000,6:1688-1693.
    [19]
    HAMMER B K, BASSLER B L. Quorum sensing controls biofilm formation in Vibrio cholerae[J]. Molecular Microbiology, 2003, 50(1):101-114.
    [20]
    EBERL L, WINSON M K, STERNBERG C, et al. Involvement of N-acyl-L-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens[J]. Molecular Microbiology, 1996, 20(1):127-136.
    [21]
    CROSSMAN L, DOW J M. Biofilm formation and dispersal in Xanthomonas campestris[J]. Microbes and Infection, 2004, 6(6):623-629.
    [22]
    EICKHOOF M J, BASSLER B L. SnapShot:bacterial quorum sensing[J]. Cell, 2018, 174(5):1328-e1.
    [23]
    ZHANG L H. Quorum quenching and proactive host defense[J]. Trends in Plant Science, 2003, 8(5):238-244.
    [24]
    YOU J L, XUE X L, CAO L X, et al. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66[J]. Appl Microbiol Biotechnol, 2007, 76(5):1137-1144.
    [25]
    AUGUSTINE N, KUMAR P, THOMAS S. Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp[J]. Arch Microbiol, 2010, 192(12):1019-1022.
    [26]
    LIN Y H, XU J L, HU J Y, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003, 47(3):849-860.
    [27]
    MICHELS J J, ALLAIN E J, BORCHARDT S A, et al. Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection[J]. Journal of Chromatography A, 2000, 898(2):153-165.
    [28]
    HENTZER M, WU H, ANDERSEN J B, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors[J]. The Embo Journal, 2014, 22(15):3803-3815.
    [29]
    ZENG Z R, QIAN L, CAO L X, et al. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa[J]. Appl Microbiol Biotechnol, 2008, 79(1):119-126.
    [30]
    DING X, YIN B, QIAN L, et al. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm[J]. Journal of Medical Microbiology, 2011, 60:1827-1834.
    [31]
    FAKHRI H, SHAHI A, OVEZ S, et al. Bioaugmentation with immobilized endophytic Penicillium restrictum to improve quorum quenching activity for biofouling control in an aerobic hollow-fiber membrane bioreactor treating antibiotic-containing wastewater[J]. Ecotoxicology and Environmental Safety, 2021, 210:111831.
    [32]
    XU B, NG T C A, HUANG S, et al. Quorum quenching affects biofilm development in an anaerobic membrane bioreactor (AnMBR):from macro to micro perspective[J]. Bioresource Technology, 2022, 344(Pt B):126183.
    [33]
    TEPLITSKI M, MATHESIUS U, RUMBAUGH K P. Perception and Degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells[J]. Chemical Reviews, 2011, 111(1):100-116.
    [34]
    PONNUSAMY K, PAUL D, KWEON J H. Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin[J]. Environmental Engineering Science, 2009, 26(8):1359-1363.
    [35]
    KATEBIAN L, HOFFMANN M R, JIANG S C. Incorporation of quorum sensing inhibitors onto reverse osmosis membranes for biofouling prevention in seawater desalination[J]. Environmental Engineering Science, 2018, 35(4):261-269.
    [36]
    XU H J, LIU Y. Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production[J]. Water Research, 2011, 45(17):5796-5804.
    [37]
    SIDDIQUI M F, SAKINAH M, SINGH L, et al. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer[J]. Journal of Biotechnology, 2012, 161(3):190-197.
    [38]
    KAPPACHERY S, PAUL D, YOON J, et al. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane[J]. Biofouling, 2010, 26(6):667-672.
    [39]
    ZHANG J, RUI X, WANG L, et al. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation[J]. Food Control, 2014, 42:125-131.
    [40]
    GUTIERREZ-PACHECO M M, GONZALEZ-AGUILAR G A, MARTINEZ-TELLEZ M A, et al. Carvacrol inhibits biofilm formation and production of extracellular polymeric substances of Pectobacterium carotovorum subsp. carotovorum[J]. Food Control, 2018, 89:210-218.
    [41]
    DONG Y H, XU J L, LI X Z, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proceedings of the National Academy of Sciences, 2000, 97(7):3526-3531.
    [42]
    PARK S Y, KANG H O, JANG H S, et al. Identification of Extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Applied and Environmental Microbiology, 2005, 71(5):2632-2641.
    [43]
    UROZ S, CHHABRA S R, CÁMARA M, et al. N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities[J]. Microbiology, 2005, 151(10):3313-3322.
    [44]
    YEON K M, CHEONG W S, OH H S, et al. Quorum sensing:a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment[J]. Environmental Science and Technology, 2009, 43(2):380-385.
    [45]
    YEON K M, LEE C H, KIM J. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching[J]. Environmental Science and Technology, 2009, 43(19):7403-7409.
    [46]
    LEE B, YEON K M, SHIM J, et al. Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica[J]. Biomacromolecules, 2014, 15(4):1153-1159.
    [47]
    JIANG W, XIA S, LIANG J, et al. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors[J]. Water Resarch, 2013, 47(1):187-196.
    [48]
    KIM J H, CHOI D C, YEON K M, et al. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching[J]. Environmental Science and Technology, 2011, 45(4):1601-1607.
    [49]
    KIM T H, LEE I, YEON K M, et al. Biocatalytic membrane with acylase stabilized on intact carbon nanotubes for effective antifouling via quorum quenching[J]. Journal of Membrane Science, 2018, 554:357-365.
    [50]
    ZHU Z Y, WANG L, LI Q Q. A bioactive poly (vinylidene fluoride)/graphene oxide@acylase nanohybrid membrane:enhanced anti-biofouling Based on Quorum Quenching[J]. Journal of Membrane Science, 2018, 547:110-122.
    [51]
    OH H S, YEON K M, YANG C S, et al. Control of membrane biofouling in mbr for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane[J]. Environmental Science and Technology, 2012, 46(9):4877-4884.
    [52]
    CHEONG W S, LEE C H, MOON Y H, et al. Isolation and identification of indigenous quorum quenching bacteria, Pseudomonas sp. 1A1, for biofouling control in MBR[J]. Industrial & Engineering Chemistry Research, 2013, 52(31):10554-10560.
    [53]
    KAMPOURIS I D, KARAYANNAKIDIS P D, BANTI D C, et al. Evaluation of a novel quorum quenching strain for MBR biofouling mitigation[J]. Water Research, 2018, 143(15):56-65.
    [54]
    HAM S Y, KIM H S, CHA E, et al. Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors[J]. Bioresource Technology, 2018, 258:220-226.
    [55]
    OH H S, KIM S R, CHEONG W S, et al. Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant[J]. Appl Microbiol Biotechnol, 2013, 97(23):10223-10231.
    [56]
    WEERASEKARA N A, CHOO K H, LEE C H. Biofouling control:bacterial quorum quenching versus chlorination in membrane bioreactors[J]. Water Research, 2016, 103(15):293-301.
    [57]
    KIM S R, OH H S, JO S J, et al. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors:physical and biological effects[J]. Environmental Science and Technology, 2013, 47(2):836-842.
    [58]
    LEE S H, LEE S, LEE K, et al. More efficient media design for enhanced biofouling control in a membrane bioreactor:quorum quenching bacteria entrapping hollow cylinder[J]. Environmental Science and Technology, 2016, 50(16):8596-8604.
    [59]
    LEE S, PARK S K, KWON H, et al. Crossing the border between laboratory and field:bacterial quorum quenching for anti-biofouling strategy in an MBR[J]. Environmental Science and Technology, 2016, 50(4):1788-1795.
    [60]
    OH H S, TAN C H, LOW J H, et al. Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes[J]. Water Research, 2017, 112:29-37.
    [61]
    SHAH S S A, LEE K, PARK H, et al. Live membrane filters with immobilized quorum quenching bacterial strains for anti-biofouling[J]. Journal of Membrane Science, 2022, 641:119895.
    [62]
    YU H R, LIANG H, QU F S, et al. Biofouling control by biostimulation of quorum-quenching bacteria in a membrane bioreactor for wastewater treatment[J]. Biotechnology Bioengineering, 2016, 113(12):2624-2632.
  • Relative Articles

    [1]YANG Quan, LIU Sha, JIANG Chaochao, LIU Rongrong, ZHANG Peng, QIN Caihong. DEGRADATION OF CHLOROBENZENE BY NONTHERMAL PLASMA COUPLED LIQUID PHASE Fe-C CATALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 85-94. doi: 10.13205/j.hjgc.202401012
    [2]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [3]CHEN Sisi, TANG Xingying, REN Pengwei, LIN Zitao, QIN Zu'an, ZHU Riguang, WANG Yinghui. RESEARCH PROGRESS ON APPLICATION OF CATALYSTS IN HYDROTHERMAL CARBONIZATION PROCESS OF BIOMASS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 195-204. doi: 10.13205/j.hjgc.202304027
    [4]YU Miaofei, DU Shengnan, MI Junfeng, WANG Xiaogang. RESEARCH PROGRESS OF LOW-TEMPERATURE PLASMA SYNERGISTIC CATALYTIC TREATMENT OF VOCs[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 213-219,212. doi: 10.13205/j.hjgc.202208030
    [5]FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
    [6]ZHANG Ru-jie, WANG Fu-mei, BAI Peng-fei, CHEN Xiao-gen, WANG Zhi, SHEN Bo-xiong, WU Chun-fei. NH3-SCR PERFORMANCE OF LOW VANADIUM-BASED CATALYST PREPARED BY BALL MILLING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 103-110. doi: 10.13205/j.hjgc.202103015
    [7]WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, CHEN Yu-feng, DAI Chang-you, HU Li-ming. EFFECT OF ZrO2 DOPING ON DENITRIFICATION PERFORMANCE OF V2O5-MoO3/TiO2 CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 107-112,119. doi: 10.13205/j.hjgc.202005019
    [8]ZHU Heng, DONG Chang-qing, WANG Xiao-dong, ZHU Yan-jun, SHEN Chen, ZHANG Xu-ming, QIN Wu, HU Xiao-ying, ZHANG Jun-jiao, WANG Xiao-qiang, ZHAO Ying, XUE Jun-jie. PREPARATION AND PROPERTIES OF V-Mo/TiO2 CORDIERITE SUPPORTED DENITRATION CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 168-174. doi: 10.13205/j.hjgc.202009027
    [9]LIU Chang-dong, YU Shuang-jiang, MIAO Xue, SHAN Liang, LIU Jun, PENG Yue, CHEN Jian-jun, LI Jun-hua. EFFECTS OF CHELATING AGENTS OF VANADIUM SALT ON PHYSICOCHEMICAL PROPERTIES AND CATALYTIC PERFORMANCES OF V2O5/TiO2 SCR CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 174-179,81. doi: 10.13205/j.hjgc.202008029
    [13]Zhong Lu, Hu Xiaotu. STERILIZATION FOR WASTEWATER BY STREAMER CORONA PLASMAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 56-59. doi: 10.13205/j.hjgc.201503011
  • Cited by

    Periodical cited type(1)

    1. 丁康君. 含盐有机废液焚烧处理技术概述. 湖北理工学院学报. 2024(03): 23-27 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.4 %FULLTEXT: 17.4 %META: 79.9 %META: 79.9 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.7 %其他: 14.7 %其他: 0.6 %其他: 0.6 %上海: 1.6 %上海: 1.6 %东莞: 2.2 %东莞: 2.2 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 6.6 %北京: 6.6 %南京: 0.3 %南京: 0.3 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %大同: 0.3 %大同: 0.3 %大阪府: 0.3 %大阪府: 0.3 %天津: 4.7 %天津: 4.7 %宣城: 0.3 %宣城: 0.3 %常州: 4.4 %常州: 4.4 %常德: 0.6 %常德: 0.6 %广州: 2.2 %广州: 2.2 %张家口: 2.8 %张家口: 2.8 %徐州: 0.3 %徐州: 0.3 %惠州: 1.3 %惠州: 1.3 %成都: 1.6 %成都: 1.6 %扬州: 1.6 %扬州: 1.6 %拉蒙维尔圣阿尼: 1.9 %拉蒙维尔圣阿尼: 1.9 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.1 %杭州: 3.1 %武汉: 0.6 %武汉: 0.6 %泰州: 0.6 %泰州: 0.6 %济源: 0.6 %济源: 0.6 %深圳: 1.9 %深圳: 1.9 %湖州: 0.6 %湖州: 0.6 %漯河: 4.1 %漯河: 4.1 %石家庄: 0.3 %石家庄: 0.3 %绍兴: 0.6 %绍兴: 0.6 %舟山: 0.3 %舟山: 0.3 %芒廷维尤: 17.2 %芒廷维尤: 17.2 %芝加哥: 6.0 %芝加哥: 6.0 %苏州: 0.3 %苏州: 0.3 %西宁: 2.8 %西宁: 2.8 %西安: 0.6 %西安: 0.6 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 2.2 %运城: 2.2 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %郑州: 1.3 %郑州: 1.3 %重庆: 0.3 %重庆: 0.3 %镇江: 0.6 %镇江: 0.6 %长春: 0.3 %长春: 0.3 %长沙: 0.9 %长沙: 0.9 %青岛: 1.6 %青岛: 1.6 %其他其他上海东莞临汾保定北京南京南通厦门台州大同大阪府天津宣城常州常德广州张家口徐州惠州成都扬州拉蒙维尔圣阿尼昆明晋城朝阳杭州武汉泰州济源深圳湖州漯河石家庄绍兴舟山芒廷维尤芝加哥苏州西宁西安西雅图贵阳运城连云港遵义郑州重庆镇江长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(11) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return