Citation: | HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006 |
[1] |
钱鹏, 汪华林, 王剑刚. 餐厨垃圾的混速热解实验研究[J]. 太原理工大学学报, 2010, 41(5):508-511.
|
[2] |
王义文, 周丽杰, 宋锦东, 等. 餐厨垃圾处理技术综述[J]. 现代制造技术与装备, 2020, (6):173-175.
|
[3] |
徐栋, 沈东升, 冯华军. 厨余垃圾的特性及处理技术研究进展[J]. 科技通报, 2011, 27(1):130-135.
|
[4] |
汪群慧, 马鸿志, 王旭明, 等. 厨余垃圾的资源化技术[J]. 现代化工, 2004,24(7):56-59.
|
[5] |
潘丽爱, 张贵林, 徐立新, 等. 餐厨垃圾生物降解过程的试验研究[J]. 粮油加工, 2009(9):157-160.
|
[6] |
梁政, 杨勇华, 樊洪, 等. 厨余垃圾处理技术及综合利用研究[J]. 中国资源综合利用, 2004(8):36-38.
|
[7] |
马鸿志, 宫利娟, 汪群慧, 等. Plackett-Burman实验设计优化餐厨垃圾发酵产燃料酒精的研究[J]. 环境科学, 2008,29(5):1452-1456.
|
[8] |
许晓锋, 林琦. 我国餐厨垃圾资源化处理技术现状及建议措施[J]. 环境与发展, 2020, 32(11):73-74.
|
[9] |
黄博, 张傑, 常风民, 等. 餐厨垃圾分选有机废物热解动力学特性分析[J]. 环境工程学报, 2017, 11(11):6000-6006.
|
[10] |
GUO Q, CHENG Z, CHEN G, et al. Assessment of biomass demineralization on gasification:from experimental investigation, mechanism to potential application[J]. Sci Total Environ, 2020, 726:138634.
|
[11] |
毛如增, 冀克俭, 张银生, 等. DSC法测定环氧树脂固化反应温度和反应热[J]. 工程塑料应用, 2002,30(11):36-39.
|
[12] |
艾必聪, 齐俊峰, 李御锋. 燃煤锅炉燃烧效率提升方法探析[J]. 广西节能, 2019,30(4):21-23.
|
[13] |
姚宗路, 仉利, 赵立欣, 等. 生物质热解气燃烧装置设计与燃烧特性试验[J]. 农业机械学报, 2017, 48(12):299-305.
|
[14] |
王楠, 张珺婷, 朱昊辰, 等. 由餐厨垃圾制备生物炭的研究进展[J]. 环境科学与技术, 2016, 39(增刊2):245-250.
|
[15] |
XIN WANG L S, XIAOYI YANG. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.[J]. Bioresource Technol, 2017, 229:119-125.
|
[16] |
YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13):1781-1788.
|
[17] |
MING X, XU F, JIANG Y, et al. Thermal degradation of food waste by TG-FTIR and Py-GC/MS:pyrolysis behaviors, products, kinetic and thermodynamic analysis[J]. J Clean Prod, 2020, 244:118713.
|
[18] |
XU F, WANG B, YANG D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR:pyrolysis behaviors and kinetic analysis[J]. Energ Convers Manage, 2018, 171:1106-1115.
|
[19] |
TIAN L, SHEN B, XU H, et al. Thermal behavior of waste tea pyrolysis by TG-FTIR analysis[J]. Energy, 2016, 103:533-542.
|
[20] |
李文涛, 柴宝华, 王美净, 等. 不同生活垃圾组分热解炭化特性与热解焦傅里叶红外光谱表征[J]. 新能源进展, 2020, 8(1):22-27.
|
[21] |
CZAJCZYNSKA D, AHMAD D, KRZYZYNSKA R, et al. Products' composition of food waste low-temperature slow pyrolysis[M]//KAZMIERCZAK B, KUTYLOWSKA M, PIEKARSKA K, et al. 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering Eko-Dok 2018. 2018.
|
[22] |
HU Z, MA X, CHEN C. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae[J]. Bioresource Technol, 2012, 107:487-493.
|
[23] |
PARK C, LEE N, KIM J, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270:116045.
|
[24] |
LI J, LIU H, JIAO L, et al. Microwave pyrolysis of herb residue for syngas production with in-situ tar elimination and nitrous oxides controlling[J]. Fuel Processing Technology, 2021, 221:106955.
|
[25] |
WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62:33-86.
|
[26] |
HOSSAIN M A, JEWARATNAM J, GANESAN P, et al. Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production:parametric investigation[J]. Energ Convers Manage, 2016, 115:232-243.
|
[27] |
LI S, BARRETO V, LI R, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. J Anal Appl Pyrol, 2018, 133:136-146.
|
[28] |
DEMIRBAS A. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis[J]. Energy Sources, 2005, 27(14):1313-1319.
|
[29] |
刘海力. 厨余垃圾的燃烧与热解特性研究[D]. 广州:华南理工大学, 2014.
|