Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006
Citation: HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006

SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW

doi: 10.13205/j.hjgc.202212006
  • Received Date: 2022-07-27
    Available Online: 2023-03-23
  • Food waste has a complex composition and high moisture content. Although the pyrolysis process can achieve fast, harmless reduction and energy reuse of food waste, the process highly relies on external energy input. Thus the mass and energy evaluation for the pyrolysis process is very important. In this work, the mass distribution and energy flow for the pyrolysis of food waste were comprehensively investigated. We tried to achieve self-powered prolysis by burning the pyrolytic products. The pyrolysis experiments were conducted in a lab-scale fixed-bed reactor, and the influence of moisture on food waste and pyrolysis temperature was investigated. Moreover, based on the results of TG-DSC, an index (ERPC) was built for evaluating the potential of self-power. Results showed that when the temperature increased from 400 ℃ to 800 ℃, the solid product of pyrolysis decreased while the gaseous product increased. The liquid product increased firstly then decrease, and peaked at 500 ℃. Based on the analysis of the heating value of the products, the high pyrolysis temperature and moisture content weakened energy production. If all of the pyrolysis products (gas, oil and char) were burned, the moisture content of food waste should be lower than 40% for achieving self-power, and the pyrolysis temperature should be lower than 500 ℃. If only burning gas and oil products, the pyrolysis temperature should be lower than 600 ℃, and the moisture content lower than 10%. However, self-power can never be achieved under any conditions, if only burning prolysis gas.
  • loading
  • [1]
    钱鹏, 汪华林, 王剑刚. 餐厨垃圾的混速热解实验研究[J]. 太原理工大学学报, 2010, 41(5):508-511.
    [2]
    王义文, 周丽杰, 宋锦东, 等. 餐厨垃圾处理技术综述[J]. 现代制造技术与装备, 2020, (6):173-175.
    [3]
    徐栋, 沈东升, 冯华军. 厨余垃圾的特性及处理技术研究进展[J]. 科技通报, 2011, 27(1):130-135.
    [4]
    汪群慧, 马鸿志, 王旭明, 等. 厨余垃圾的资源化技术[J]. 现代化工, 2004,24(7):56-59.
    [5]
    潘丽爱, 张贵林, 徐立新, 等. 餐厨垃圾生物降解过程的试验研究[J]. 粮油加工, 2009(9):157-160.
    [6]
    梁政, 杨勇华, 樊洪, 等. 厨余垃圾处理技术及综合利用研究[J]. 中国资源综合利用, 2004(8):36-38.
    [7]
    马鸿志, 宫利娟, 汪群慧, 等. Plackett-Burman实验设计优化餐厨垃圾发酵产燃料酒精的研究[J]. 环境科学, 2008,29(5):1452-1456.
    [8]
    许晓锋, 林琦. 我国餐厨垃圾资源化处理技术现状及建议措施[J]. 环境与发展, 2020, 32(11):73-74.
    [9]
    黄博, 张傑, 常风民, 等. 餐厨垃圾分选有机废物热解动力学特性分析[J]. 环境工程学报, 2017, 11(11):6000-6006.
    [10]
    GUO Q, CHENG Z, CHEN G, et al. Assessment of biomass demineralization on gasification:from experimental investigation, mechanism to potential application[J]. Sci Total Environ, 2020, 726:138634.
    [11]
    毛如增, 冀克俭, 张银生, 等. DSC法测定环氧树脂固化反应温度和反应热[J]. 工程塑料应用, 2002,30(11):36-39.
    [12]
    艾必聪, 齐俊峰, 李御锋. 燃煤锅炉燃烧效率提升方法探析[J]. 广西节能, 2019,30(4):21-23.
    [13]
    姚宗路, 仉利, 赵立欣, 等. 生物质热解气燃烧装置设计与燃烧特性试验[J]. 农业机械学报, 2017, 48(12):299-305.
    [14]
    王楠, 张珺婷, 朱昊辰, 等. 由餐厨垃圾制备生物炭的研究进展[J]. 环境科学与技术, 2016, 39(增刊2):245-250.
    [15]
    XIN WANG L S, XIAOYI YANG. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.[J]. Bioresource Technol, 2017, 229:119-125.
    [16]
    YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13):1781-1788.
    [17]
    MING X, XU F, JIANG Y, et al. Thermal degradation of food waste by TG-FTIR and Py-GC/MS:pyrolysis behaviors, products, kinetic and thermodynamic analysis[J]. J Clean Prod, 2020, 244:118713.
    [18]
    XU F, WANG B, YANG D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR:pyrolysis behaviors and kinetic analysis[J]. Energ Convers Manage, 2018, 171:1106-1115.
    [19]
    TIAN L, SHEN B, XU H, et al. Thermal behavior of waste tea pyrolysis by TG-FTIR analysis[J]. Energy, 2016, 103:533-542.
    [20]
    李文涛, 柴宝华, 王美净, 等. 不同生活垃圾组分热解炭化特性与热解焦傅里叶红外光谱表征[J]. 新能源进展, 2020, 8(1):22-27.
    [21]
    CZAJCZYNSKA D, AHMAD D, KRZYZYNSKA R, et al. Products' composition of food waste low-temperature slow pyrolysis[M]//KAZMIERCZAK B, KUTYLOWSKA M, PIEKARSKA K, et al. 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering Eko-Dok 2018. 2018.
    [22]
    HU Z, MA X, CHEN C. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae[J]. Bioresource Technol, 2012, 107:487-493.
    [23]
    PARK C, LEE N, KIM J, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270:116045.
    [24]
    LI J, LIU H, JIAO L, et al. Microwave pyrolysis of herb residue for syngas production with in-situ tar elimination and nitrous oxides controlling[J]. Fuel Processing Technology, 2021, 221:106955.
    [25]
    WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism:a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62:33-86.
    [26]
    HOSSAIN M A, JEWARATNAM J, GANESAN P, et al. Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production:parametric investigation[J]. Energ Convers Manage, 2016, 115:232-243.
    [27]
    LI S, BARRETO V, LI R, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. J Anal Appl Pyrol, 2018, 133:136-146.
    [28]
    DEMIRBAS A. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis[J]. Energy Sources, 2005, 27(14):1313-1319.
    [29]
    刘海力. 厨余垃圾的燃烧与热解特性研究[D]. 广州:华南理工大学, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return