Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
Citation: QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007

A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE

doi: 10.13205/j.hjgc.202212007
  • Received Date: 2021-12-30
    Available Online: 2023-03-23
  • The pilot-scale DANO and static fermentation were used as the main equipment of the primary and secondary fermentation process, respectively, and the appropriate control parameters were explored for the kitchen solid slag produced in the actual project. According to conditioners, C/N and moisture content, five batches of M1, M2, D1, D2 and D3 were set. Physicochemical indexes, ammonia volatilization, oxygen content, cellulase and protease content and final fertilizer quality indexes were detected to reveal the effect of DANO dynamic composting of kitchen solid residues under different conditions. The results showed that: 1) when the environmental temperature was in the range of 18.5 to 25.8 ℃, the temperature rise of the primary fermentation process of DANO was less affected by the environment. Compared with straw, sawdust had the characteristics of a slow heating rate, high peak temperature and long composting duration; 2) when the moisture content was controlled to be 50% to 60%, the temperature of the straw pile body in the high-temperature period was more than 55 ℃, and the maintenance time was longer than 7 days; 3) it was reasonable to control the initial C/N of the straw pile in the range of 23 to 27. To sum up, the composting cycle could be controlled in the range of 28 to 33 days by controlling the relevant conditions. Relevant important indexes including final product C/N, moisture content, total nutrient and pH all met the requirements of China’s Field Standard Organic Fertilizer (NY/T 525—2021)
  • [1]
    施军营,薛方亮,DODA A,等.城市餐厨垃圾前处理的工艺优化[J].环境工程学报,2017,11(10):5658-5662.
    [2]
    KENG Z X,CHONGS,NGCG,et al.Community-scale composting for food waste:a life-cycle assessment-supported case study[J].Journal of Cleaner Production,2020,261:121220.
    [3]
    张虹, 李蕾, 彭韵, 等. 氨氮对餐厨垃圾厌氧消化性能及微生物群落的影响[J].中国环境科学,2020,40(8):3465-3474.
    [4]
    袁京,张地方,李赟,等.外加碳源对厨余垃圾生物干化效果的影响[J].中国环境科学,2017,37(2):628-635.
    [5]
    薛晶晶,李彦明,常瑞雪,等.厨余与园林废物共堆肥过程氮素转化及损失[J].农业工程学报,2021,37(10):192-197.
    [6]
    宋彩红,齐辉,魏自民,等.耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾[J].环境工程,2021,39(5):111-117.
    [7]
    詹亚斌,魏雨泉,林永锋,等.通风模式对餐厨垃圾生物干化能效及氮素损失的影响[J].环境工程,2021,39(5):124-130.
    [8]
    杨延梅,席北斗,刘洪亮,等.餐厨垃圾堆肥理化特性变化规律研究[J].环境科学研究,2007,20(2):72-77.
    [9]
    聂永丰.固体废物处理工程技术手册[M].北京:化学工业出版社,2013.
    [10]
    张玉冬,张红玉,顾军,等. 通风量对厨余垃圾堆肥过程中H2S和NH3排放的影响[J]. 农业环境科学学报,2015,34(7):1371-1377.
    [11]
    关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1983.
    [12]
    翟红,张衍林,艾平,等.不同初始含水率对沼渣和秸秆混合堆肥过程的影响[J].湖北农业科学,2011,50(21):4357-4360.
    [13]
    韩涛,任连海,张相锋,等.初始环境温度对餐厨垃圾好氧堆肥过程的影响[J].环境科学学报,2006,26(9):1458-1462.
    [14]
    王蕊,邰俊,赵由才,等.餐厨垃圾资源化衍生品的堆肥中试实验[J].环境工程学报,2021,15(9):3012-3019.
    [15]
    李小建,周振鹏,谢锡龙,等.餐厨垃圾连续堆肥处理系统中试研究[J].环境工程学报,2013,7(1):340-344.
    [16]
    陈冠益.餐厨垃圾废物资源综合利用[M].北京:化学工业出版社,2018.
    [17]
    赵天涛.固体废物堆肥原理与技术[M].北京:化学工业出版社,2017.
    [18]
    牛俊玲,郑宾国,梁丽珍.餐厨垃圾堆肥过程中水解酶活性变化的研究[J].中国农学通报,2012,28(11):284-288.
    [19]
    GODWIN C M, WHITAKER E A, COTNER J B. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria[J]. Ecology, 2017, 98(3):820-829.
    [20]
    PAREDES C, ROIG A, BERNAL M P, et al. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes[J]. Biology and Fertility of Soils, 2000, 11(11):6235-6248.
    [21]
    朴哲,崔宗林,苏宝林,等.高温堆肥的生物化学变化特征及植物抑制物质的降解规律[J].农业环境保护,2001,20(4):206-209.
    [22]
    郭倩倩,吴拥军,韩丽珍,等.餐厨垃圾自然升温堆肥工艺研究[J].环境工程学报,2013,7(7):2705-2710.
    [23]
    齐凯佳.不同通风量对污泥生物干化效果的影响[J].山西建筑,2011,37(6):102-105.
    [24]
    BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment:a review[J]. Bioresource Technology, 2009, 100(22):5444-5453.
    [25]
    WANG X, SELVAM A, WONG J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217:227-232.
    [26]
    王洪涛.农村固体废物处理处置与资源化技术[M].北京:中国环境科学出版社,2006.
    [27]
    解开治,徐培智,张发宝,等.接种微生物菌剂对猪粪堆肥过程中细菌群落多样性的影响[J].应用生态学学报,2009,20(8):2012-2018.
    [28]
    解开治,徐培智,张仁陆,等.一种腐熟促进剂配合微生物腐熟剂对鲜牛粪堆肥的效应研究[J].农业环境科学学报,2007,26(3):1142-1146.
    [29]
    文昊深,彭绪亚.重庆城市生活垃圾高温好氧堆肥试验研究[J].四川建筑,2004,24(5):84-86.
  • Relative Articles

    [1]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [2]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [3]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [4]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [5]TAN Yujie, CHEN Yayi, ZHOU Binjie, LU Xueqin, ZHEN Guangyin, HU Weijie. PROMOTING DEWATERABILITY OF WASTE ACTIVATED SLUDGE BY ACTIVATED CARBON ACTIVATED PERSULFATE OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 70-74. doi: 10.13205/j.hjgc.202405009
    [6]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [7]WU Xia, SANG Kangyun, LIU Zeyu. EXPERIMENTAL STUDY ON IN-SITU CHEMICAL OXIDATION HIGH-PRESSURE ROTARY SPRAY REMEDIATION OF ORGANIC CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 124-130. doi: 10.13205/j.hjgc.202307017
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [10]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [11]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [12]PENG Jin-jin, LI Lin, ZHENG Chuan, HU Ling, WU Xiao-xu. ANALYSIS OF DISTRIBUTION CHARACTERISTICS OF BTEX IN A DYESTUFF CHEMICAL SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 187-194. doi: 10.13205/j.hjgc.202104028
    [13]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [14]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [15]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [20]Wang Peng Wang Xiaofeng Wu Guiwu, . RESEARCH ON GROUNDWATER POLLUTION IN AN INDUSTRIAL SITE IN THE UPPER CAMBRIAN STRATA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 35-38. doi: 10.13205/j.hjgc.201506008
  • Cited by

    Periodical cited type(1)

    1. 蒋亚萍,闫嘉宁,陈余道,杨鹏飞,李炜轩,邓旭,邓日添. 过硫酸盐联合硝酸盐处理汽油污染源区地下水:砂槽实验研究. 环境科学学报. 2023(08): 131-140 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.2 %META: 82.2 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.4 %其他: 26.4 %上海: 0.6 %上海: 0.6 %临汾: 0.6 %临汾: 0.6 %佛山: 0.6 %佛山: 0.6 %北京: 2.3 %北京: 2.3 %南昌: 1.1 %南昌: 1.1 %南通: 0.6 %南通: 0.6 %台州: 2.9 %台州: 2.9 %天津: 0.6 %天津: 0.6 %常德: 1.1 %常德: 1.1 %广州: 1.1 %广州: 1.1 %张家口: 1.1 %张家口: 1.1 %成都: 1.1 %成都: 1.1 %昆明: 1.7 %昆明: 1.7 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.7 %杭州: 1.7 %格兰特县: 3.4 %格兰特县: 3.4 %武汉: 0.6 %武汉: 0.6 %济源: 0.6 %济源: 0.6 %湖州: 1.1 %湖州: 1.1 %烟台: 0.6 %烟台: 0.6 %芒廷维尤: 23.6 %芒廷维尤: 23.6 %芝加哥: 2.9 %芝加哥: 2.9 %衢州: 2.3 %衢州: 2.3 %西宁: 8.0 %西宁: 8.0 %西安: 1.7 %西安: 1.7 %贵阳: 0.6 %贵阳: 0.6 %运城: 4.6 %运城: 4.6 %遵义: 0.6 %遵义: 0.6 %郑州: 2.9 %郑州: 2.9 %重庆: 1.1 %重庆: 1.1 %其他上海临汾佛山北京南昌南通台州天津常德广州张家口成都昆明晋城朝阳杭州格兰特县武汉济源湖州烟台芒廷维尤芝加哥衢州西宁西安贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (249) PDF downloads(7) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return