Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZOU Zhikun, CHEN Yudao, ZHENG Gao, LU Renqian, YANG Pengfei, WU Weizhong. EFFECTS OF ETHANOL ON REMOVAL OF BTEX FROM GASOLINE BY PERSULFATE IN LIMESTONE AQUEOUS MEDIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 98-104. doi: 10.13205/j.hjgc.202212013
Citation: DONG Xinlei, LIN Qingshan, LIN Yanan, XI Shihao, CHENG Boyi, CHEN Lei, ZHANG Da, WANG Zongping, GUO Gang. EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 71-78. doi: 10.13205/j.hjgc.202212010

EFFECTS OF ELECTROLYTES ON ACIDOGENIC FERMENTATION OF WASTE ACTIVATED SLUDGE FOR VOLATILE FATTY ACIDS PRODUCTION VIA ELECTROCHEMICAL PRETREATMENT

doi: 10.13205/j.hjgc.202212010
  • Received Date: 2022-03-19
    Available Online: 2023-03-23
  • Anaerobic fermentation (AF) of waste activated sludge (WAS) via electrochemical pretreatment (EPT) is a practical, effective and cost-saving protocol for volatile fatty acids (VFAs) production. However, AF performance is significantly affected by the different electrolytes during EPT. This study aimed to investigate the effects of different types of electrolytes (Control, NaCl, Na2SO4 and CaCl2) on VFAs production from AF of WAS via EPT with a current intensity at 1 A for 60 min. The results showed that by using 0.05 mol/L NaCl as the electrolyte during EPT, the amount of organic matter released from WAS, such as soluble COD, glycogen, protein etc., was the highest compared to other electrolytes. Thus the maximal VFAs accumulation during AF via EPT by using NaCl as the electrolyte reached 2625.8 mg COD/L, which was 51.6% higher than that of the control. These results indicated that EPT with NaCl as the electrolyte could effectively improve the hydrolysis of WAS, increase the amount of organic matter released from WAS and promote the enrichment of anaerobic fermentative bacteria (such as Firmicutes and Bacteroidetes). All of these subsequently promoted the AF of WAS and thus increased VFAs production, which in turn enhanced the resource recovery from WAS treatment.
  • [1]
    SEGGIANI M, VITOLO S, PUCCINI M, et al. Cogasification of sewage sludge in an updraft gasifier[J]. Fuel, 2012,93:486-491.
    [2]
    刘鑫, 惠秀娟, 唐凤德. 我国典型城市污泥产生量处理处置现状及经济学趋势分析[J]. 环境保护与循环经济, 2021,41(4):88-93.
    [3]
    LIANG T, ELMAADAWY K, LIU B, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production:recent updates of pretreatment methods and the potential effect of humic and nutrients substances[J]. Process Safety and Environmental Protection, 2021,145:321-339.
    [4]
    刘长青, 薛珊, 金秋燕, 等. 餐厨垃圾与市政污泥混合比对共厌氧消化性能的影响[J]. 中国沼气, 2018,36(2):48-51.
    [5]
    魏玉莲, 叶京, 杨玮晴, 等. 热、碱预处理对厨余垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 广东化工, 2021,48(15):183-185.
    [6]
    柯壹红, 曾艺芳, 李华藩, 等. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020,38(8):21-26.
    [7]
    章涛. 超声波预处理耦合技术改善污泥厌氧发酵产酸的研究[D]. 苏州:苏州科技学院, 2015.
    [8]
    王羚. 化学预处理对微生物电解促进污泥厌氧发酵工艺影响研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
    [9]
    李宵宵, 吴丽杰, 任瑞鹏, 等. 高含固污泥厌氧消化处理技术研究进展[J]. 现代化工, 2020,40(8):21-25.
    [10]
    何永全, 曾祖刚, 黄安寿. 餐厨垃圾和市政污泥联合高温厌氧消化产沼气研究[J]. 四川环境, 2018,37(3):28-32.
    [11]
    任贺. 剩余污泥的电解预处理效能研究[D]. 长春:吉林建筑大学, 2014.
    [12]
    毛彦俊. 剩余污泥电化学含氯漂白技术研究[D]. 大连:大连交通大学, 2012.
    [13]
    ZHANG D, JIANG H, CHANG J, et al. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production[J]. Bioresource Technology, 2019,279:99-102.
    [14]
    隋志男, 郅二铨, 姚杰, 等. 三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报, 2015,5(2):114-120.
    [15]
    MASIHI H, BADALIANS GHOLIKANDI G. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge:a novel approach[J]. Water Research, 2018,144:373-382.
    [16]
    H L O, J R N, L F A, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of Biological Chemistry, 1951,193(1):265-75.
    [17]
    DUBOIS M, GILLES K, HAMILTON J K, et al. A colorimetric method for the determination of sugars[J]. Nature, 1951,168:167.
    [18]
    宋亚梦, 卢静芳, 苑宏英, 等. 含氯氧化剂对污泥水解性能的影响研究[J]. 环境科学与技术, 2018,41(10):82-86.
    [19]
    CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter[J]. Environmental Science & Technology, 2003,37(24):5701-5710.
    [20]
    WU J, YANG Q, LUO W, et al. Role of free nitrous acid in the pretreatment of waste activated sludge:extracellular polymeric substances disruption or cells lysis?[J]. Chemical Engineering Journal, 2018,336:28-37.
    [21]
    ERKAN H S, ENGIN G O. A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants[J]. Journal of Environmental Chemical Engineering, 2020,8(4).
    [22]
    尹利鹏. 剩余活性污泥快速降解及产酸研究[D]. 阜新:辽宁工程技术大学, 2019.
    [23]
    ZHEN G, LU X, LI Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion[J]. Applied Energy, 2014,128:93-102.
    [24]
    叶彩虹. 电化学预处理改善污泥厌氧消化性能的研究[D]. 上海:上海交通大学, 2017.
    [25]
    XU Y, ZHENG L, GENG H, et al. Enhancing acidogenic fermentation of waste activated sludge via isoelectric-point pretreatment:Insights from physical structure and interfacial thermodynamics[J]. Water Research, 2020,185:116237.
    [26]
    李冬娜, 马晓军. 污泥厌氧发酵产酸机理及应用研究进展[J]. 生物质化学工程, 2020,54(2):51-60.
    [27]
    XIAONAN Z, YU L, LIU H, et al. Effect of pH on volatile fatty acid production and the microbial community during anaerobic digestion of Chinese cabbage waste[J]. Bioresource Technology, 2021,336:125338.
    [28]
    BENYAN L, ZIYUAN X, MIN G, et al. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates:performance and microbial community characteristics[J]. Bioresource technology, 2021,346:126448.
    [29]
    XING B, HAN Y, WANG X C, et al. Persistent action of cow rumen microorganisms in enhancing biodegradation of wheat straw by rumen fermentation[J]. Science of The Total Environment, 2020,715:136529.
    [30]
    郝晓地, 陈峤, 刘然彬. Tetrasphaera聚磷菌研究进展及其除磷能力辨析[J]. 环境科学学报, 2020,40(3):741-753.
    [31]
    JINSONG L, HAIBO Z, PANYUE Z, et al. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum:hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure[J]. Waste Management, 2021,124:235-245.
    [32]
    梁英. 炼厂剩余活性污泥的水解酸化实验研究[D]. 北京:中国石油大学(北京), 2017.
    [33]
    WATERS J L, LEY R E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health[J]. BMC Biology, 2019,17(1):88.
    [34]
    LAWSON PAUL A. 梭菌属分类研究进展:现状和展望(英文)[J]. 微生物学通报, 2016,43(5):1070-1074.
  • Relative Articles

    [1]LIAO Xun, LI Yancheng, ZHANG Yuduo, YANG Qilin, LI Jiang. RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 113-120. doi: 10.13205/j.hjgc.202402013
    [2]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [3]HU Xiaomin, JIANG Shuqi. TREATMENT OF EMULSIFIED OIL WASTEWATER BY PULSE ELECTRIC FIELD DEMULSIFICATION-ACTIVATED PERSULFATE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 55-62. doi: 10.13205/j.hjgc.202401008
    [4]DU Yu, SUN Shuqing, DAI Wen, CAO Menghua, TU Shuxin, XIONG Shuanglian. REMOVAL EFFICIENCY AND MECHANISM OF ATRAZINE FROM CONTAMINATED SOIL BY PERSULFATE AND ASCORBIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 146-152. doi: 10.13205/j.hjgc.202406017
    [5]TAN Yujie, CHEN Yayi, ZHOU Binjie, LU Xueqin, ZHEN Guangyin, HU Weijie. PROMOTING DEWATERABILITY OF WASTE ACTIVATED SLUDGE BY ACTIVATED CARBON ACTIVATED PERSULFATE OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 70-74. doi: 10.13205/j.hjgc.202405009
    [6]CONG Xin, SUN Meizhen, YUAN Xuehong, LI Taolue, XUE Nandong. IRON-BASED NANOMATERIALS MEDIATED BY LEAF EXTRACTS FROM SYCAMORE ACTIVATE PERSULFATES TO CATALYZE TBBPA DEGRADATION IN SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 107-114. doi: 10.13205/j.hjgc.202305015
    [7]WU Xia, SANG Kangyun, LIU Zeyu. EXPERIMENTAL STUDY ON IN-SITU CHEMICAL OXIDATION HIGH-PRESSURE ROTARY SPRAY REMEDIATION OF ORGANIC CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 124-130. doi: 10.13205/j.hjgc.202307017
    [8]ZHANG Yun. ADVANCES IN NUMERICAL SIMULATION OF GROUNDWATER IN-SITE CHEMICAL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 197-204,217. doi: 10.13205/j.hjgc.202205029
    [9]ZHANG Shicheng, LI Simin, ZHU Jia. DEGRADATION OF METHYL ORANGE BY CuO/g-C3N4 ACTIVATED PEROXODISULFATE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 40-48. doi: 10.13205/j.hjgc.202210006
    [10]SUN Li-hua, MEI Xiao-yu, GAO Cheng, FENG Cui-min. MECHANISMS AND EFFICIENCY OF REMOVAL OF ORGANIC MATTER AND ANTIBIOTIC RESISTANCE GENES IN SECONDARY EFFLUENT OF WATARPLANTS BY DIFFERENT PERSULFATE ACTIVATION METHODS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 74-80,134. doi: 10.13205/j.hjgc.202209010
    [11]CAO Yuan, LI Xiao-dong, PENG Chang-sheng, SUN Zong-quan, SHEN Jia-lun, MA Fu-jun, GU Qing-bao. REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 135-142,178. doi: 10.13205/j.hjgc.202111017
    [12]PENG Jin-jin, LI Lin, ZHENG Chuan, HU Ling, WU Xiao-xu. ANALYSIS OF DISTRIBUTION CHARACTERISTICS OF BTEX IN A DYESTUFF CHEMICAL SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 187-194. doi: 10.13205/j.hjgc.202104028
    [13]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [14]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [15]XU Rui, YANG Wei, YANG Zhe, CHENG Qian-lan, GU Li-ting, GUO Sheng. HIGH-EFFICIENT REMOVAL OF TETRACYCLINE HYDROCHLORIDE BASED ON PEROXYMONOSULFATE ACTIVATED BY CuO/EXPANDED GRAPHITE COMPOSITE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 48-54,47. doi: 10.13205/j.hjgc.202002006
    [20]Wang Peng Wang Xiaofeng Wu Guiwu, . RESEARCH ON GROUNDWATER POLLUTION IN AN INDUSTRIAL SITE IN THE UPPER CAMBRIAN STRATA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 35-38. doi: 10.13205/j.hjgc.201506008
  • Cited by

    Periodical cited type(1)

    1. 蒋亚萍,闫嘉宁,陈余道,杨鹏飞,李炜轩,邓旭,邓日添. 过硫酸盐联合硝酸盐处理汽油污染源区地下水:砂槽实验研究. 环境科学学报. 2023(08): 131-140 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.2 %META: 82.2 %PDF: 0.6 %PDF: 0.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.4 %其他: 26.4 %上海: 0.6 %上海: 0.6 %临汾: 0.6 %临汾: 0.6 %佛山: 0.6 %佛山: 0.6 %北京: 2.3 %北京: 2.3 %南昌: 1.1 %南昌: 1.1 %南通: 0.6 %南通: 0.6 %台州: 2.9 %台州: 2.9 %天津: 0.6 %天津: 0.6 %常德: 1.1 %常德: 1.1 %广州: 1.1 %广州: 1.1 %张家口: 1.1 %张家口: 1.1 %成都: 1.1 %成都: 1.1 %昆明: 1.7 %昆明: 1.7 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.7 %杭州: 1.7 %格兰特县: 3.4 %格兰特县: 3.4 %武汉: 0.6 %武汉: 0.6 %济源: 0.6 %济源: 0.6 %湖州: 1.1 %湖州: 1.1 %烟台: 0.6 %烟台: 0.6 %芒廷维尤: 23.6 %芒廷维尤: 23.6 %芝加哥: 2.9 %芝加哥: 2.9 %衢州: 2.3 %衢州: 2.3 %西宁: 8.0 %西宁: 8.0 %西安: 1.7 %西安: 1.7 %贵阳: 0.6 %贵阳: 0.6 %运城: 4.6 %运城: 4.6 %遵义: 0.6 %遵义: 0.6 %郑州: 2.9 %郑州: 2.9 %重庆: 1.1 %重庆: 1.1 %其他上海临汾佛山北京南昌南通台州天津常德广州张家口成都昆明晋城朝阳杭州格兰特县武汉济源湖州烟台芒廷维尤芝加哥衢州西宁西安贵阳运城遵义郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (316) PDF downloads(4) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return