Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
LI Kemeng, LI Jieyue, YOU Shaohong, SUN Xiaojie, LI Ningjie, HUANG Hongwei, XIAO He. ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011
Citation: LI Kemeng, LI Jieyue, YOU Shaohong, SUN Xiaojie, LI Ningjie, HUANG Hongwei, XIAO He. ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 79-88. doi: 10.13205/j.hjgc.202212011

ELECTRON TRANSFER MECHANISM AND SPECTRAL EVOLUTION CHARACTERISTICS OF HUMIC ACID DURING PIG MANURE COMPOSTING

doi: 10.13205/j.hjgc.202212011
  • Received Date: 2022-08-21
    Available Online: 2023-03-23
  • Humic acid (HA) and Fulvic acid (FA) are organic components produced during the composting process, which have redox ability to act as electron shuttles to mediate the bioreduction of pollutants, due to the presence of active functional groups such as quinone and phenol groups. In this study, the electron transfer capacity (ETC) of HA and FA in different periods of pig manure composting was determined by electrochemical method, and the chemical structure changes of HA and FA and their effects on ETC were investigated by combining UV-Vis, FTIR and 3D-EEM. The results showed that from beginning to the end, the ETC of HA increased from 10.06 μmol e-/g C to 40.07 μmol e-/g C, and the ETC of FA increased from 15.36 μmol e-/g C to 69.73 μmol e-/g C, both of which showed a fluctuating increasing trend with time, and EDC was dominant in the electron transfer process. Spectral analysis showed that lignin-like substances in the compost would be transformed into humus with a high degree of polymerization after composting. Compared with the initial stage of composting, the degree of humification and aromatization of organic matter at the maturity stage increased, and the molecular weight also raised. Protein-like substances (component C4) gradually decreased in the composting process, which was easy to be used as carbon sources by microorganisms to convert into humic-like substances (component C2), and component C2 was relatively stable in composting. Correlation analysis showed that a decrease in protein-like substances and an increase in humification enhanced the ETC of HA and FA, and the electron transfer capacity of FA was more susceptible to the degree of humification.
  • loading
  • [1]
    吴浩玮, 孙小淇, 梁博文,等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 39:1168-1176.
    [2]
    张浩然, 魏晶晶, 王慧春. 生物质炭在畜禽粪便好氧堆肥中的应用研究进展[J]. 中国家禽, 2020, 42:83-87.
    [3]
    陶金沙, 李正东, 刘福理,等. 添加小麦秸秆生物质炭对猪粪堆肥腐熟程度及温室气体排放的影响[J]. 土壤通报, 2014, 45:1233-1240.
    [4]
    许晓玲, 呼世斌, 刘晋波,等. 蘑菇渣和畜禽粪便复配蚯蚓堆肥过程中理化指标和酶活性变化研究[J]. 环境工程, 2018, 36(7):122-127.
    [5]
    THURMAN E M, MALCOLM R L. Preparative isolation of aquatic humic substances[J]. Environmental Science & Technology, 1981, 15(4):463-466.
    [6]
    CHRISTENSEN J B, JENSEN D L, FILIP Z, et al. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater[J]. Water Research, 1998, 32(1):125-135.
    [7]
    ZHANG J, CHEN L, YIN H, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention:two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis[J]. Environmental Pollution, 2017, 225:86-92.
    [8]
    ZHAO X, HE X, XI B, et al. Response of humic-reducing microorganisms to the redox properties of humic substance during composting[J]. Waste Management, 2017, 70:37-44.
    [9]
    栾富波, 谢丽, 李俊,等. 腐殖酸的氧化还原行为及其研究进展[J]. 化学通报, 2008, (11):833-837.
    [10]
    杨浈, 姜杰. 合成腐殖酸氧化还原能力与光学性质探究[J]. 环境化学, 2015, 34(6):1134-1141.
    [11]
    蔡茜茜, 袁勇, 胡佩,等. 腐殖质电化学特性及其介导的胞外电子传递研究进展[J]. 应用与环境生物学报, 2015, 21(6):996-1002.
    [12]
    唐朱睿, 黄彩红, 高如泰,等. 胞外呼吸菌在污染物迁移与转化过程中的应用进展[J]. 农业资源与环境学报, 2017, 34(4):299-308.
    [13]
    WU C Y, ZHUANG L, ZHOU S G, et al. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5[J]. Microbial Biotechnology, 2013, 6(2):141-149.
    [14]
    LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448.
    [15]
    SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19):372-372.
    [16]
    占新华, 周立祥, 沈其荣,等. 污泥堆肥过程中水溶性有机物光谱学变化特征[J]. 环境科学学报, 2001:470-474.
    [17]
    SOUZA C, AMARAL SOBRINHO N, LIMA E S A, et al. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting[J]. Journal of Environmental Management, 2019, 247:291-298.
    [18]
    ABOUELWAFA R, AMIR S, SOUABI S, et al. The fulvic acid fraction as it changes in the mature phase of vegetable oil-mill sludge and domestic waste composting[J]. Bioresource Technology, 2008, 99(14):6112-6118.
    [19]
    赵伟, 席北斗, 魏自民,等. 不同原料堆肥胡敏酸的荧光特性[J]. 环境科学研究, 2011, 24:1042-1046.
    [20]
    BARJE F, EL FELS L, EL HAJJOUJI H, et al. Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste[J]. International Biodeterioration & Biodegradation, 2012, 74:17-23.
    [21]
    张红玉. 厨余垃圾、猪粪和秸秆联合堆肥的腐熟度评价[J]. 环境工程, 2013, 31(增刊1):470-474.
    [22]
    周文兵, 刘大会, 朱端卫,等. 不同调理剂对猪粪堆肥腐殖质特性及元素含量变化的影响[J]. 华中农业大学学报, 2005,24(6):599-603.
    [23]
    YUAN Y, XI B, HE X, et al. Compost-derived humic acids as regulators for reductive degradation of nitrobenzene[J]. Journal of Hazardous Materials, 2017, 339:378-384.
    [24]
    HE X S, XI B D, CUI D Y, et al. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268:256-263.
    [25]
    唐朱睿, 席北斗, 檀文炳,等. 市政污泥堆肥过程胡敏酸电子转移能力的演变规律[J]. 环境化学, 2018, 37(4):689-697.
    [26]
    唐朱睿, 黄彩红, 檀文炳,等. 基于电化学方法研究猪粪堆肥过程溶解性有机物电子转移能力演变规律[J]. 分析化学, 2018, 46(3):422-431.
    [27]
    EL Hajjouji H, FAKHAREDINE N, AIT BADDI G, et al. Treatment of olive mill waste-water by aerobic biodegradation:an analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy[J]. Bioresource Technology, 2007, 98(18):3513-3520.
    [28]
    GAO W, GUO-DI Z, GAO D, et al. Transformation of organic matter during thermophilic composting of pig manure[J]. Environmental Science, 2006, 27(5):986-990.
    [29]
    唐朱睿. 不同物料堆肥有机物电子转移机制研究[D].桂林:桂林理工大学, 2018.
    [30]
    余旭芳, 周俊, 任兰天,等. 小麦秸秆堆肥水溶性有机物的结构和组成演变[J]. 光谱学与光谱分析, 2021, 41:1199-1204.
    [31]
    李丽, 檀文炳, 王国安,等. 腐殖质电子传递机制及其环境效应研究进展[J]. 环境化学, 2016, 35(2):254-266.
    [32]
    袁英, 何小松, 席北斗,等. 腐殖质氧化还原和电子转移特性研究进展[J]. 环境化学, 2014, 33(12):2048-2057.
    [33]
    MA L, DU Y, CHEN S, et al. Highly efficient removal of Cr(Ⅵ) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1[J]. Chemosphere, 2021, 287(Pt 2):132184.
    [34]
    YANG C, HOU L X, XI B D, et al. Contribution of redox-active properties of compost-derived humic substances in hematite bioreduction[J]. Chinese Chemical Letters, 2021.
    [35]
    NISHIJIMA W, SPEITEL G E. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon[J]. Chemosphere, 2004, 56(2):113-119.
    [36]
    周立祥. 固体废物处理处置与资源化[M]. 北京:中国农业出版社, 2007.
    [37]
    WANG L, WU F, ZHANG R, et al. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau[J]. Journal of Environmental Sciences, 2009, 21(5):581-588.
    [38]
    赵越, 魏雨泉, 李洋,等. 不同物料堆肥腐熟程度的紫外-可见光谱特性表征[J]. 光谱学与光谱分析, 2015, 35:961-965.
    [39]
    BIKOVENS O, DIZHBITE T, TELYSHEVA G. Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease[J]. Environmental Technology, 2012, 33(10/11/12):1427-1433.
    [40]
    YANG Y, DU W, CUI Z, et al. Spectroscopic characteristics of dissolved organic matter during pig manure composting with bean dregs and biochar amendments[J]. Microchemical Journal, 2020, 158:105226.
    [41]
    夏璇. 生物炭对鸡粪好氧堆肥中养分含量及腐殖化的影响研究[D].重庆:重庆大学, 2019.
    [42]
    栾润宇, 高珊, 徐应明,等. 不同钝化剂对鸡粪堆肥重金属钝化效果及其腐熟度指标的影响[J]. 环境科学, 2020, 41(1):469-478.
    [43]
    宋海燕, 尹友谊, 宋建中. 不同来源腐殖酸的化学组成与结构研究[J]. 华南师范大学学报(自然科学版), 2009(1):61-66.
    [44]
    张彩华. 光谱法在腐殖质研究中的应用进展[J]. 光谱实验室, 2011, 28(2):693-696.
    [45]
    唐璐. 不同堆肥条件对堆肥过程中碳素损失及腐殖质形成的影响研究[D].杭州:杭州师范大学, 2016.
    [46]
    张雪辰, 邓双, 杨密密,等. 畜禽粪便堆腐过程中有机碳组分与腐熟指标的变化[J]. 环境科学学报, 2014, 34(10):2559-2565.
    [47]
    王宇蕴, 赵兵, 马丽婷,等. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5):22-28.
    [48]
    宋彩红, 张亚丽, 李鸣晓,等. 抗酸化微生物复合菌系对餐厨垃圾堆肥腐殖质组分光谱学性质的影响[J]. 光谱学与光谱分析, 2019, 39:3533-3539.
    [49]
    YAMASHITA Y, PANTON A, MAHAFFEY C, et al. Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation-emission matrix fluorescence and parallel factor analysis[J]. Ocean Dynamics, 2011, 61(5):569-579.
    [50]
    BAGHOTH S A, SHARMA S K, AMY G I. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2):797-809.
    [51]
    周倩倩, 苏荣国, 白莹,等. 舟山渔场有色溶解有机物(CDOM)的三维荧光-平行因子分析[J]. 环境科学, 2015, 36:163-171.
    [52]
    WU J, HUA Z, HE P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Research, 2011, 45(4):1711-1719.
    [53]
    刘堰杨, 秦纪洪, 刘琛,等. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 2018, 39(2):720-728.
    [54]
    MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1):38-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return