Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHUANG Guijia, LIU Lifan, HUANG Xiao, GAO Jingsi, ZHU Jia. NITROGEN AND PHOSPHORUS REMOVAL PERFORMANCE OF AAO-BIOFILM PROCESS FOR ELECTROPLATING WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 128-133. doi: 10.13205/j.hjgc.202212017
Citation: ZHUANG Guijia, LIU Lifan, HUANG Xiao, GAO Jingsi, ZHU Jia. NITROGEN AND PHOSPHORUS REMOVAL PERFORMANCE OF AAO-BIOFILM PROCESS FOR ELECTROPLATING WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 128-133. doi: 10.13205/j.hjgc.202212017

NITROGEN AND PHOSPHORUS REMOVAL PERFORMANCE OF AAO-BIOFILM PROCESS FOR ELECTROPLATING WASTEWATER TREATMENT

doi: 10.13205/j.hjgc.202212017
  • Received Date: 2022-03-02
    Available Online: 2023-03-23
  • To improve the pollutant removal efficiency of electroplating wastewater, the removal efficiencies of organic matter, nitrogen and phosphorus by anaerobic anoxic aerobic (AAO)-biofilm coupling process were discussed. The experimental results showed that the AAO-biofilm process owned good operation performance for treating refractory organic matters in electroplating wastewater, and the COD removal rate was stable at about 89%. The majority of nitrogen was removed through nitrification in the aerobic tank and denitrification in the anoxic tank. The nitrogen removal rate of the system reached 70%~80% after 60 days operation. Refractory organics affected the removal efficiency of NH4+-N and COD and made a time gap between them. The change of NH4+-N lagged behind COD. The phosphorus removal performance of the AAO-biofilm process tended to be stable after 50 days operation, the effluent concentration was less than 1 mg/L, and the removal rate was more than 65%. Phosphorus was mainly removed through anaerobic release and aerobic absorption of the functional microorganisms.
  • [1]
    LI J C, LI M, WANG S, et al. Key role of pore size in Cr(Ⅵ) removal by the composites of 3-dimensional mesoporous silica nanospheres wrapped with polyaniline[J]. Science of the Total Environment, 2020, 729:139009.
    [2]
    YEN H Y,KANG S F,LIN C P. Effective reuse of electroplating rinse wastewater by combining PAC with H2O2-UV Process[J]. Water Environment Research, 2015, 87(4):312-320.
    [3]
    国家质检总局. GB 21900-2008,电镀污染物排放标准[S]. 2008.
    [4]
    张晓霞,熊仁久,周家中,等. 浙江某工业废水处理厂升级改造运行效果解析[J]. 中国给水排水, 2021, 37(5):37-42

    , 50.
    [5]
    夏超,周浩然,周家中,等. MBBR工艺用于工业废水强化去除氮素的研究分析[J]. 工业用水与废水, 2020, 51(4):25-29.
    [6]
    孙振江,佟毅,刘桂文,等. 基于改性填料的MBBR工艺高负荷处理淀粉糖废水的应用研究[J]. 生物加工过程, 2021, 19(3):288-293.
    [7]
    汪银梅. 膜法A2/O2工艺处理高氨氮含量废水工程设计[J]. 水处理技术, 2016, 42(12):130-132

    , 137.
    [8]
    蒋维卿,么兴荣,王帆,等. 生物膜耦合工艺在污水处理中的应用[J]. 净水技术, 2021, 40(10):94-100

    , 149.
    [9]
    FERNANDO M S. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (mbbrs) for wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(1/2/3/4/5/6):439-470.
    [10]
    王永磊,刘宇雷,王尚,等. A2O生物膜工艺强化生物脱氮和污泥减量研究[J]. 工业水处理, 2021, 41(3):72-76.
    [11]
    行业标准-环保. 厌氧-缺氧-好氧活性污泥法 污水处理工程技术规范[S]. 2010.
    [12]
    蒋杭城,马艺鸣,刘秀红,等. Fe对污水和污泥处理过程中微生物和工艺性能的影响[J]. 环境工程, 2016, 34(11):1-6

    , 54.
    [13]
    任丽飞,杨新萍,张雯雯. 外源Ca2+对SBR启动期活性污泥胞外多聚物的动态影响[J]. 环境科学, 2017, 38(6):2470-2476.
    [14]
    张兰河,张宇,王旭明,等. Ca2+与Mg2+对SBR运行效果和活性污泥性能的影响[J]. 化学工程, 2014, 42(8):1-5.
    [15]
    龚文静,潘伟亮,曹云鹏,等. MBBR工艺的应用研究及发展前景[J]. 应用化工, 2021, 50(3):780-783

    , 788.
    [16]
    王子龙. MBBR-A2/O工艺处理城镇生活污水实验研究[D]. 沈阳:沈阳建筑大学, 2020.
    [17]
    范琦,李广,秦娟娟,等. A/A/O-MBBR耦合工艺处理城镇污水效能研究[J]. 辽宁化工, 2021, 50(3):289-291.
    [18]
    张文艺,赵斌成,毛林强,等. MBBR-A2O/MBR处理农村生活污水动力学研究[J]. 安全与环境学报, 2021, 21(1):351-359.
    [19]
    王翥田,车明凤,韩萍. HYBAS工艺的脱氮效能及同步硝化反硝化分析[J]. 中国给水排水, 2018,34(15):59-63.
    [20]
    潘伟亮,吴齐叶,王清钰,等. 移动床生物膜反应器处理农村污水中试研究[J]. 水处理技术, 2020, 46(10):103-107.
    [21]
    傅金祥,陈正清,赵玉华,等. 挂膜方式对曝气生物滤池的影响[J]. 水处理技术, 2006,32(8):42-45.
    [22]
    HJ/T 399-2007. 水质 化学需氧量的测定 快速消解分光光度法[S]. 北京:国家环境保护总局,2007.
    [23]
    HJ 535-2009. 水质 氨氮的测定 纳氏试剂分光光度法[S]. 北京:环境保护部, 2009.
    [24]
    HJ 636-2012. 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法[S]. 北京:环境保护部,2012.
    [25]
    GB 11893-1989. 水质 总磷的测定 钼酸铵分光光度法[S].北京:国家技术监督局. 1989.
    [26]
    SL 84-1994.硝酸盐氮的测定(紫外分光光度法)[S].北京:水利部, 1995.
    [27]
    GB 7480-87.水质 硝酸盐氮的测定 酚二磺酸分光光度法[S].北京:国家环境保护局,1987.
    [28]
    李洋,孙萌萌,孟祥龙,等. 生物法处理锌镍合金电镀废水方法研究[J]. 水处理技术, 2020, 46(2):84-88.
    [29]
    刘智颖,汪晓军,陈振国,等. 配位-化学氧化-曝气生物滤池组合工艺处理高质量浓度的含氰电镀废水[J]. 电镀与环保, 2016, 36(2):46-49.
    [30]
    张娜,王琳. A2/O淹没式生物膜工艺处理城镇污水的研究[J]. 水处理技术, 2012, 38(2):65-68.
    [31]
    PHANWILAI supaporn,KANGWANNARAKUL Naluporn, NOOPHAN pongsak (lek), et al. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio[J]. Frontiers of Environmental Science & Engineering, 2020, 14(6):251-263.
    [32]
    黄崇,袁林江,牛晚霞,等. 投加填料对微生物群落结构的影响及对水质的变化研究[J]. 中国环境科学, 2021, 41(1):207-213.
    [33]
    冯翠杰,王淑梅,陈少华. 复合生物膜-活性污泥反应器同步脱氮除磷[J]. 环境工程学报, 2012, 6(9):3106-3114.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]LIU Yuxin, ZENG Lingwu, FANG Zheng, SUN Dezhi. COMPREHENSIVE PERFORMANCE EVALUATION OF URBAN WASTEWATER TREATMENT PLANTS IN THE UPPER AND MIDDLE REACHES OF THE YELLOW RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 34-42. doi: 10.13205/j.hjgc.202412005
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WU Yi, MAO Xufeng, SONG Xiuhua, YU Hongyan, TANG Wenjia, XIE Shunbang, LIU Zebi, DING Qizhi. COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF METHANOGENS IN CASCADE RESERVOIRS IN THE UPPER YELLOW RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 8-17. doi: 10.13205/j.hjgc.202412002
    [5]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [6]LI Feifei, SU Zhiguo, CAO Feng, MU Qinglin, HUANG Bei, CHEN Lüjun, WEN Donghui. CONTRIBUTION OF WASTEWATER DISCHARGE FROM SEWAGE TREATMENT PLANTS TO ANTIBIOTIC POLLUTION IN COASTAL WATER: A CASE STUDY OF HANGZHOU BAY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 1-8. doi: 10.13205/j.hjgc.202404001
    [7]ZHANG Yili, LIU Hui, QIAN Xiaoyong. N2O EMISSION FROM MUNICIPAL WASTEWATER TREATMENT PLANTS: EMISSION CHARACTERISTICS AND CONTROL STRATEGIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 9-21. doi: 10.13205/j.hjgc.202404002
    [8]YU Huaixing, YUAN Ding, HE Zihao. APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 165-171. doi: 10.13205/j.hjgc.202311026
    [9]WANG Qinyi, SHENG Yangyue, SONG Ningning, ZHANG Junqi, ZENG Songxi, QIAN Xiaoyong, QIU Kaipei, LIU Qizhen. PROGRESS OF CH4 AND N2O MONITORING IN FULL-SCALE WASTEWATER TREATMENT PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 51-60. doi: 10.13205/j.hjgc.202310008
    [10]ZHANG Jie, ZHANG Jian, CAO Xiaoqiang, CHEN Xinhan, LIU Huaqing. ENHANCED NITRIFICATION AND DENITRIFICATION BY COUPLING MICROBIAL ELECTROLYSIS CELL IN A SINGLE BED VERTICAL FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 32-37,70. doi: 10.13205/j.hjgc.202306005
    [11]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [12]SHAN Changgong, WANG Wei, XIE Yu, WU Peng, ZENG Xiangyu, ZHU Qianqian, LIANG Bin, ZHA Lingling, LIU Cheng. TOTAL COLUMN CONCENTRATION OBSERVATION OF CO2 AND CH4 BY A PORTABLE GROUND-BASED FTIR SPECTROMETER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 14-19,140. doi: 10.13205/j.hjgc.202310003
    [13]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [14]WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
    [15]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [16]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [17]Chen Shi, PENG Lai, XU Yifeng, LIANG Chuanzhou, NI Bingjie. RECENT ADVANCES IN MATHEMATICAL MODELING OF NITROUS OXIDES EMISSION DURING BIOLOGICAL NITROGEN REMOVAL FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 97-106,122. doi: 10.13205/j.hjgc.202206013
    [18]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [19]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
    [20]YU Yong, YU Sheng-hua, CHEN Da-gang. PRACTICE AND REFLECTION ON CLEAN EMISSION TECHNOLOGY TRANSFORMATION OF URBAN SEWAGE TREATMENT PLANTS IN ZHEJIANG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 19-24. doi: 10.13205/j.hjgc.202007003
  • Cited by

    Periodical cited type(6)

    1. 徐金兰,许开慧,曹泽壮,代佳楠,李峰森,白文广,荣悦彤,薛淑君. 预氧化联合激活剂促进微生物长效降解土壤中烷烃的研究. 环境科学研究. 2024(07): 1561-1572 .
    2. 徐佰青,王雨,张雷,王文祥,李爱民,单广波. 腐殖酸的人工合成及其在环境污染修复中的研究进展. 环境工程学报. 2024(07): 1768-1782 .
    3. 李时琛,周航海,姜丽佳,林晓云,章春芳,李艳红. 沿海滩涂石油污染生物修复技术. 安全与环境工程. 2022(02): 166-173 .
    4. 郑瑾,韩瑞瑞,李丹丹,王馨妤,高春阳,杜显元,张晓飞,邹德勋. 过氧化尿素与微生物联合修复石油污染土壤. 化工进展. 2022(09): 5085-5093 .
    5. 周霞萍,梁圣模,沈天瑞,王玉诺,刘泽. 创新腐植酸产品工艺开展“碳预算”“碳达峰”“碳中和”示例分析. 腐植酸. 2021(03): 61-66 .
    6. 刘维涛,李剑涛,郑泽其,李法云. 微生物固定化技术修复石油烃污染土壤. 应用技术学报. 2021(04): 339-347 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.1 %FULLTEXT: 12.1 %META: 83.5 %META: 83.5 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.6 %其他: 20.6 %其他: 0.4 %其他: 0.4 %Central District: 3.6 %Central District: 3.6 %上海: 1.6 %上海: 1.6 %东莞: 0.8 %东莞: 0.8 %保定: 0.4 %保定: 0.4 %北京: 2.8 %北京: 2.8 %南京: 5.2 %南京: 5.2 %南昌: 0.8 %南昌: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 1.6 %合肥: 1.6 %嘉兴: 0.4 %嘉兴: 0.4 %大同: 0.8 %大同: 0.8 %天津: 2.8 %天津: 2.8 %宣城: 1.6 %宣城: 1.6 %常州: 1.6 %常州: 1.6 %常德: 0.4 %常德: 0.4 %广州: 1.6 %广州: 1.6 %张家口: 0.8 %张家口: 0.8 %扬州: 2.0 %扬州: 2.0 %无锡: 0.4 %无锡: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.4 %晋城: 0.4 %杭州: 0.8 %杭州: 0.8 %松原: 0.4 %松原: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.8 %沈阳: 0.8 %温州: 0.8 %温州: 0.8 %湖州: 1.2 %湖州: 1.2 %漯河: 5.2 %漯河: 5.2 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 20.2 %芒廷维尤: 20.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 3.2 %苏州: 3.2 %莆田: 0.4 %莆田: 0.4 %衡阳: 0.8 %衡阳: 0.8 %衢州: 0.8 %衢州: 0.8 %西宁: 1.6 %西宁: 1.6 %西安: 1.6 %西安: 1.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 2.0 %运城: 2.0 %遵义: 0.4 %遵义: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 0.8 %重庆: 0.8 %长沙: 2.0 %长沙: 2.0 %青岛: 1.2 %青岛: 1.2 %其他其他Central District上海东莞保定北京南京南昌台州合肥嘉兴大同天津宣城常州常德广州张家口扬州无锡昆明晋城杭州松原武汉沈阳温州湖州漯河石家庄芒廷维尤芝加哥苏州莆田衡阳衢州西宁西安贵阳运城遵义郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (253) PDF downloads(18) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return