Citation: | NI Maosen, YANG Bo, GU Qiuxiang, WANG Zhenhui, HUANG Qiong, CHEN Mindong. REMOVAL PERFORMANCE OVER MnCeOx/P84 CATALYTIC FILTER WITH SPHERICAL CATALYTIC INTERFACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 157-164. doi: 10.13205/j.hjgc.202212021 |
[1] |
HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
|
[2] |
BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health:Mn-based materials for the NOx abatement[J]. Current Opinion in Chemical Engineering, 2016,(13):133-141.
|
[3] |
毕谆,周红刚.PM2.5引起的肺部疾病及其作用机制的研究进展[J].环境工程,2016,34(增刊1):496-499.
|
[4] |
XU J Q, CHEN G R, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia:review[J]. Chemical Engineering Journal, 2018,353:507-518.
|
[5] |
廖玉云,王梦瑜,曹宗平, 等.水泥窑SCR烟气脱硝催化剂的选型与应用[J].中国水泥,2016(5):82-86.
|
[6] |
YANG B, HUANG Q, CHEN M D, et al. Mn-Ce-Nb-Ox/P84 catalytic filters prepared by a novel method for simultaneous removal of particulates and NO[J]. Journal of Rare Earths, 2019, 37(3):273-281.
|
[7] |
国务院关于印发打赢蓝天保卫战三年行动计划的通知[J]. 中华人民共和国国务院公报, 2018(20):40-52.
|
[8] |
环境保护部, 国家质量监督检验检疫总局. 水泥工业大气污染物排放标准:GB 4915-2013[S].北京:中国环境科学出版社,2013.
|
[9] |
ZHENG Y Y, ZHANG Y B, WANG X, et al. MnO2 catalysts uniformly decorated on polyphenylene sulfide filter felt by a polypyrrole-assisted method for use in the selective catalytic reduction of NO with NH3[J]. RSC Adv, 2014, 4(103):59242-59247.
|
[10] |
YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24:148-152.
|
[11] |
杨波, 沈岳松, 邱云顺, 等. Mn-La-Ce-Ni-Ox/P84一体化滤布的低温脱硝影响因素[J]. 环境工程学报, 2016, 10(11):6583-6587.
|
[12] |
YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017,50:133-141.
|
[13] |
付彬彬, 郑玉婴, 陈健, 等. 氧化还原沉淀法制备Mn-Ce-Co-Ox/PPS滤料及其低温SCR活性[J]. 燃料化学学报, 2017, 45(6):731-739.
|
[14] |
LIU M C, JING D W, ZHOU Z H, et al. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation[J]. Nat Commun, 2013, 4(1):2278-2286.
|
[15] |
PAN L, WANG S B, ZOU J J, et al. Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41[J]. Chem Commun (Camb), 2014, 50(8):988-990.
|
[16] |
GAO F Y, TANG X L, YI H H, et al. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts[J]. Chemical Engineering Journal, 2017,322:525-537.
|
[17] |
LI Y, LI Y P, WAN Y, et al. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia[J]. RSC Advances, 2016, 6(60):54926-54937.
|
[18] |
LIU C, DING R Y, XIE F C. Facile synthesis of manganese dioxide nanoparticles for efficient removal of aqueous As(Ⅲ)[J]. Journal of Chemical & Engineering Data, 2020, 65(8):3988-3997.
|
[19] |
梅超强,杨波,戴毅, 等.Co改性α-MnO2催化剂用于低温同时催化脱除烟气中的NO和C6H5Cl[J/OL].南京工业大学学报(自然科学版):1-7[2022-04-26].http://kns.cnki.net/kcms/detail/32.1670.N.20220412.1036.010.html.
|
[20] |
LI Y R, GUO Y Y, XIONG J, et al. The roles of sulfur-containing species in the selective catalytic reduction of NO with NH3 over activated carbon[J]. Industrial & Engineering Chemistry Research, 2016, 55(48):12341-12349.
|
[21] |
陈健, 郑玉婴, 张延兵, 等. 氧化还原沉淀法制备MnO2/MWCNTs催化剂及其低温SCR活性[J]. 无机材料学报,2016,31(12):1347-1354.
|
[22] |
KANG M, PARK E, KIM J, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
|
[23] |
QI G S, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis, 2003, 217(2):434-441.
|
[24] |
LIU L J, SU S, XU K, et al. Insights into the highly efficient Co modified MnSm/Ti catalyst for selective catalytic reduction of NOx with NH3 at low temperature[J]. Fuel, 2019, 255:115798.
|
[25] |
DENG S C, MENG T T, XU B L, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO[J]. Acs Catalysis, 2016, 6(9):5807-5815.
|
[26] |
TANG X L, HAO J M, XU W G, et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications, 2007, 8(3):329-334.
|
[27] |
CHAO Z X, WANG Y F, JAKOBSEN J P, et al. Numerical investigation of the sorption enhanced steam methane reforming in a fluidized bed reactor[J]. Energy Procedia, 2012, 26:15-21.
|
[28] |
LIU X L, GUO J X, CHU Y H, et al. Desulfurization performance of iron supported on activated carbon[J]. Fuel, 2014, 123:93-100.
|
[29] |
唐晓龙. 低温选择性催化还原NOx技术及反应机理[M]. 北京:冶金工业出版社, 2007.
|
[30] |
ZHANG D S, ZHANG L, FANG C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. Rsc Advances, 2013, 3(23):8811-8819.
|
[31] |
CHENG F, ZHANG D S, SHI L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology, 2013, 3(3):803-811.
|
[32] |
樊荣, 杨波, 黄琼, 等. Nb改性对MnCe0.2Ox低温SCR抗硫和水热稳定性能的影响[J]. 南京工业大学学报(自然科学版), 2020,42(6):751-759.
|
[33] |
ZHA K W, CAI S X, HANG H, et al. In situ DRIFTs investigation of promotional effects of Tungsten on MnOx-CeO2/meso-TiO2 catalysts for NOx reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45):25243-25254.
|
[34] |
FANG N J, GUO J X, SHU S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. The Chemical Engineering Journal, 2017, 325:114-123.
|
[35] |
LI G, WANG B D, WANG Z C, et al. Reaction mechanism of low-temperature selective catalytic reduction of NOx over Fe-Mn oxides supported on fly-ash-derived SBA-15 molecular sieves:structure-activity relationships and in situ DRIFT analysis[J]. The Journal of Physical Chemistry, C Nanomaterials and Interfaces, 2018, 122(35):20210-20231.
|
[36] |
ZHA K W, KANG L, FENG G,et al. Improved NOx reduction in the presence of alkali metals by using hollandite Mn-Ti oxide promoted Cu-SAPO-34 catalysts[J]. Environmental Science Nano, 2018(5):1408-1419.
|
[37] |
PENG Y, WANG C Z, LI J H. Structure-activity relationship of VOx/CeO2 nanorod for NO removal with ammonia[J]. Applied Catalysis B Environmental, 2014, 144:538-546.
|
[38] |
ZHU J, GAO F, DONG L H, et al. Studies on surface structure of MxOy/MoO3/CeO2 system (M=Ni, Cu, Fe) and its influence on SCR of NO by NH3[J]. Applied Catalysis B:Environmental, 2010, 95(1/2):144-152.
|
[39] |
QUAN X, YANG W J, CUI S T, et al. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal Society Open Science, 2018, 5(3):171846-171855.
|
[40] |
张茹杰,王夫美,白鹏飞, 等.球磨制备低钒基催化剂的NH3-SCR脱硝性能[J].环境工程,2021,39(3):103-110.
|
[41] |
沈伯雄, 刘亭. 低温NH3-SCR催化剂MnOx-CeOx/ACF的SO2中毒机理[J]. 物理化学学报, 2010,26(11):3009-3016.
|