Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xuan, XIE Tian, ZHANG Yong, DOU Peng, CUI Baoshan, CAO Bo, LI Xinyu, DING Xinyu, YANG Zhihao. OPTIMIZATION OF ECOLOGICAL WATER SUPPLY AND LONG-TERM PROTECTION OF WETLAND BASED ON THE HYDRODYNAMIC PROCESS: A CASE STUDY OF HANSHIQIAO WETLAND IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 61-71. doi: 10.13205/j.hjgc.202301008
Citation: WANG Xuan, XIE Tian, ZHANG Yong, DOU Peng, CUI Baoshan, CAO Bo, LI Xinyu, DING Xinyu, YANG Zhihao. OPTIMIZATION OF ECOLOGICAL WATER SUPPLY AND LONG-TERM PROTECTION OF WETLAND BASED ON THE HYDRODYNAMIC PROCESS: A CASE STUDY OF HANSHIQIAO WETLAND IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 61-71. doi: 10.13205/j.hjgc.202301008

OPTIMIZATION OF ECOLOGICAL WATER SUPPLY AND LONG-TERM PROTECTION OF WETLAND BASED ON THE HYDRODYNAMIC PROCESS: A CASE STUDY OF HANSHIQIAO WETLAND IN BEIJING

doi: 10.13205/j.hjgc.202301008
  • Received Date: 2022-08-20
    Available Online: 2023-03-23
  • Wetlands have important ecological service functions including water conservation, but they shrink and degenerate under the multiple stresses of human activities and climate change, and the insufficient water supply of wetlands is one of the main ecological problems. With the implementation and operation of trans-regional and trans-basin water transfer projects, ecological water replenishment has become a key technology component of wetland restoration and water resource allocation. Therefore, we should pay attention to the optimization of the water supply path of the wetland with multiple water sources, and propose the optimization scheme of the ecological water supply mode based on the hydrodynamic process of the wetland water supply. Under the background that the whole Chaobai River basin will be open to water in 2021, taking the only large reed marsh wetland in Beijing-Hanshiqiao Wetland as the case area, the SWAT model of the Chaobai River basin is constructed to simulate the runoff change rule, and the MIKE21 model is used to simulate the wetland water replenishment-hydrodynamic coupling process, and the hydrodynamic change characteristics of six wetland water replenishing scenarios are compared. The results show that the separation between the south and the north of the wetland caused by the blocked connection of the internal water system of the Hanshiqiao Wetland is the main bottleneck limiting the efficiency of ecological water replenishment. The simultaneous water replenishment of multiple flow paths in the north and south areas of the wetland, as well as the reconstruction of the wetland hydrological connection structure, are the optimal schemes to improve the hydrodynamic conditions of water replenishment and enhance the ecological water replenishment effect. The research conclusion can provide reference for long-term management and ecological restoration of wetlands, and is conducive to the construction of ecological water system in the capital city.
  • [1]
    MAO D H, WANG Z M, WU J G, et al. China's wetlands loss to urban expansion[J]. Land Degradation & Development, 2018, 29(8):2644-2657.
    [2]
    郭子良, 王大安, 刘丽, 等. 中国湿地生态补水发展现状及其生态效应研究进展[J]. 世界林业研究, 2022, 35(5):72-77.
    [3]
    GUO Y, HUANG S Z, HUANG Q, et al. Assessing socioeconomic drought based on an improved multivariate standardized reliability and resilience index[J]. Journal of Hydrology, 2019, 568:904-918.
    [4]
    YU X Y, ZHU W B, WEI J X, et al. Estimation of ecological water supplement for typical bird protection in the Yellow River Delta wetland[J]. Ecological Indicators, 2021, 127:107783.
    [5]
    YAO L M, XU Z W, CHEN X D. Sustainable water allocation strategies under various climate scenarios:a case study in China[J]. Journal of Hydrology, 2019, 574:529-543.
    [6]
    TONKIN J D, MERRITT D M, OLDEN J D, et al. Flow regime alteration degrades ecological networks in riparian ecosystems[J]. Nature Ecology and Evolution, 2018, 2:86-93.
    [7]
    WORTLEY L, HERO J M, HOWES M. Evaluating ecological restoration success:a review of the literature[J]. Restoration Ecology, 2018, 25:537-543.
    [8]
    杨薇, 赵彦伟, 刘强, 等. 白洋淀生态需水:进展及展望[J]. 湖泊科学, 2020, 32(2):294-308.
    [9]
    杨志峰, 崔保山, 孙涛. 湿地生态需水机理、模型与配置[M]. 北京:科学出版社, 2012.
    [10]
    刘立军, 张扬, 郭丽君, 等. 基于改进流量历时保证率法的河道生态需水计算[J]. 中国农村水利水电, 2020(3):74-77, 82.
    [11]
    尚文绣, 彭少明, 王煜, 等. 面向河流生态完整性的黄河下游生态需水过程研究[J]. 水利学报, 2020, 51(3):367-377.
    [12]
    张小稳, 刘国庆, 范子武. 基于水动力-水质同步原型观测的城市生态补水方案研究[J]. 水资源开发与管理, 2019(4):31-36.
    [13]
    熊亚兰. 基于MIKE21生态补水工程对洋澜湖水质改善研究[J]. 环境科学与管理, 2021, 46(10):51-54.
    [14]
    严子奇, 周祖昊, 王浩, 等. 基于精细化水资源配置模型的坪山河流域生态补水研究[J]. 中国水利, 2020(22):28-30, 33.
    [15]
    吴雪, 何佳. EFDC模型在城市景观水体生态补水工程设计中的应用:以昆明市翠湖为例[J]. 环境保护科学, 2019, 45(1):73-78.
    [16]
    JOHNSON M F, THORNE C R, CASTRO J M, et al. Biomic river restoration:a new focus for river management[J]. River Research and Applications, 2020, 36(1):3-12.
    [17]
    SHIN S, POKHREL Y, MIGUEZMACHO G. High-resolution modeling of reservoir release and storage dynamics at the continental scale[J]. Water Resources Research, 2019, 55(1):787-810.
    [18]
    李一阳, 杨默远. 北京市永定河与潮白河流域生态补水特征对比分析[J]. 北京水务, 2021(增刊1):33-38.
    [19]
    李海军. 生态补水对潮白河冲洪积扇中上部地下水涵养效果分析[J]. 城市地质, 2022, 17(2):149-157.
    [20]
    白忠, 吴寒晓, 王涛, 等. 潮白河试验性生态补水实施效果分析[J]. 北京水务, 2021(增刊1):12-15.
    [21]
    张勇, 颜泓, 苗雪鹏, 等. 北京汉石桥湿地自然保护区植被现状调查与分析[J]. 林业资源管理, 2021(6):118-123.
    [22]
    高尚, 胡鹏, 崔嵩, 等. 基于SWAT模型的挠力河流域地表径流数值模拟与不确定性分析[J]. 环境工程, 2020, 38(10):83-89.
    [23]
    李大鸣, 卜世龙, 顾利军, 等. 基于MIKE21模型的洋河水库水质模拟[J]. 安全与环境学报, 2018, 18(3):1094-1100.
    [24]
    龙圣海, 黄廷林, 李扬, 等. 基于MIKE3的金盆水库三维水温结构模拟研究[J]. 水力发电学报, 2016, 35(11):16-24.
    [25]
    ALLEN G H, PAVELSKY T M, BAREFOOT E A, et al. Similarity of stream width distributions across headwater systems[J]. Nature Communications, 2018, 610:1-7.
    [26]
    FENG M Y, LIU P, GUO S L, et al. Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios[J]. Advances in Water Resources, 2017, 104:23-26.
    [27]
    DROUINEAU H, CARTER C, RAMBONILAZA M, et al. River continuity restoration and diadromous fishes:much more than an ecological issue[J]. Environmental Management, 2018, 61:671-686.
  • Relative Articles

    [1]LI Denghui, HUANG Bangjie, ZHANG Zongyao, LIU Xiaochen, DU Hongwei, SUN Hongwei, FANG Huaiyang, FANG Xiaohang. A CASE STUDY ON URBAN NON-POINT SOURCE POLLUTION CONTROL: THE HUIZHOU CHATING ECOLOGICAL REGULATION POND IN THE SHAHE RIVER BASIN OF THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 35-42. doi: 10.13205/j.hjgc.202406005
    [2]CHEN Yan, ZHAI Jun, YANG Min, ZHU Hanshou, JIN Diandian, GAO Haifeng, HOU Peng. ANALYSIS OF ECOLOGICAL PROTECTION SITUATION AND ITS VARIATION CHARACTERISTICS OF THE CHISHUI RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 185-194. doi: 10.13205/j.hjgc.202304026
    [3]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [4]GENG Zhi, DU Jizeng, LIU Hongxi, CAO Bo, LI Xinyu, ZHANG Yong, CUI Baoshan. EVALUATION OF ECOLOGICAL WATER REPLENISHMENT AMOUNT AND PATH FOR URBAN SMALL AND MICRO WETLANDS BASED ON HYDRODYNAMIC PROCESS: A CASE STUDY OF BEIJING HANSHIQIAO WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 51-60. doi: 10.13205/j.hjgc.202301007
    [5]WANG Chao, WANG Yuan, DOU Peng, WANG Zhenmei, MENG Qingyi, YANG Moyuan, TAO Haijun. SIMULATION OF WATER BLOOM CONTROL EFFECT OF LANDSCAPE SLOW-MOVING WATER BODIES BY VELOCITY UNDER ECOLOGICAL WATER REPLENISHMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 195-203. doi: 10.13205/j.hjgc.202301024
    [6]XU Cundong, REN Zihao, HUANG Song, ZHAO Zhihong, ZI Yahui, HU Xiaomeng. OPTIMIZATION OF MIKE21 RIVER NETWORK DRAINAGE SCHEME BASED ON DYNAMIC PLANNING THEORY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 79-86. doi: 10.13205/j.hjgc.202301010
    [7]LI Zhiyun, DENG Xiaoya, LONG Aihua, CHEN Fulong, ZHANG Lili, GAO Haifeng. EVALUATION OF SOIL,WATER RESOURCES AND ECOLOGICAL CARRYING STATUS OF THE TARIM RIVER BASIN FROM THE PERSPECTIVE OF THREE-DIMENSIONAL ECOLOGICAL FOOTPRINT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 286-294. doi: 10.13205/j.hjgc.202206036
    [8]XIA Rui, JIA Ruining, CHEN Yan, WANG Lu, MA Shuqin, ZHANG Yuan. PROSPECTS OF SIMULATION METHODS FOR WATERSHED AQUATIC ECOSYSTEM INTEGRITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 241-252. doi: 10.13205/j.hjgc.202206031
    [9]PAN Ying, HAN Rui, ZHANG Yin, ZHANG Jin, YI Qitao, LI Ruonan. SCENARIO STUDY OF HYDROLOGICAL PROCESS IN COAL MINING SUBSIDENCE AREA BASED ON SWAT-FLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 272-279. doi: 10.13205/j.hjgc.202206034
    [10]XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
    [11]XU Hao, SUN Xiao-ling. THE INTERACTIVE MODELING AND JOINT PREVENTION OF WATER POLLUTION BETWEEN SURFACE WATER AND GROUNDWATER IN MAOZHOU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 21-26. doi: 10.13205/j.hjgc.202106004
    [12]LIU Jing-jing, XIE Wei-ke, ZHANG Bo, LI Chao, LI Yong-jian, DING Zhuo, CUI Hai-hang, WANG Yi. THROUGH-FLOW CHARACTERISTICS OF GRAVEL FILTER BED OF AN ACTUAL RIVER COURSE BASED ON NUMERICAL SIMULATION OF MIKE 21: A CASE STUDY OF ECOLOGICAL RESTORATION PROJECT IN A RIVER COURSE IN HANZHONG CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 47-50,147. doi: 10.13205/j.hjgc.202101006
    [13]LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007
    [14]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [15]LI Bing, QIU Yong, TIAN Yu-xin, ZHU Yin, WANG Yan, ZHENG Kai-kai, LI Ji. PERFORMANCE EVALUATION AND SCENARIO SIMULATION FOR PROCESS RETROFITTING OF WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 93-99. doi: 10.13205/j.hjgc.202007015
  • Cited by

    Periodical cited type(3)

    1. 金桂琴,黄俊雄,王军红,宋倩,李文忠,郭浩然. 基于水盐平衡的官厅水库氟化物达标途径研究. 环境工程. 2025(02): 148-156 . 本站查看
    2. 丁磊,陈黎明,王逸飞,缴健. 感潮河段城市湿地水动力模拟及改善方案研究. 水利水运工程学报. 2024(01): 35-45 .
    3. 吴悦,徐佳琪,仇文顺,王梦瑶,李述,时洋,魏加华. 潮白河北京段生态补水调度方案研究. 水利水电技术(中英文). 2023(09): 180-189 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.3 %FULLTEXT: 13.3 %META: 84.2 %META: 84.2 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 0.2 %其他: 0.2 %China: 0.2 %China: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.3 %上海: 2.3 %东莞: 3.1 %东莞: 3.1 %临汾: 0.2 %临汾: 0.2 %亳州: 1.2 %亳州: 1.2 %保定: 0.4 %保定: 0.4 %信阳: 0.6 %信阳: 0.6 %兰州: 0.2 %兰州: 0.2 %北京: 4.7 %北京: 4.7 %十堰: 0.2 %十堰: 0.2 %南京: 1.8 %南京: 1.8 %南充: 0.2 %南充: 0.2 %南通: 0.2 %南通: 0.2 %厦门: 0.6 %厦门: 0.6 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 1.6 %大同: 1.6 %大连: 3.3 %大连: 3.3 %太原: 0.8 %太原: 0.8 %宁波: 0.2 %宁波: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.2 %宿迁: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %延安: 0.2 %延安: 0.2 %张家口: 2.0 %张家口: 2.0 %成都: 0.8 %成都: 0.8 %扬州: 0.6 %扬州: 0.6 %昆明: 1.6 %昆明: 1.6 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.6 %朝阳: 0.6 %杭州: 2.3 %杭州: 2.3 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.8 %沈阳: 0.8 %济南: 0.2 %济南: 0.2 %济宁: 0.6 %济宁: 0.6 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.8 %深圳: 0.8 %湖州: 0.2 %湖州: 0.2 %湛江: 0.2 %湛江: 0.2 %漯河: 0.8 %漯河: 0.8 %珠海: 0.2 %珠海: 0.2 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 14.8 %芒廷维尤: 14.8 %芝加哥: 5.9 %芝加哥: 5.9 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 12.9 %西宁: 12.9 %西安: 0.6 %西安: 0.6 %西雅图: 0.6 %西雅图: 0.6 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.6 %运城: 1.6 %通辽: 0.2 %通辽: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %鄂州: 0.6 %鄂州: 0.6 %重庆: 0.4 %重庆: 0.4 %铁岭: 0.2 %铁岭: 0.2 %银川: 0.6 %银川: 0.6 %长春: 0.6 %长春: 0.6 %长沙: 0.8 %长沙: 0.8 %青岛: 0.6 %青岛: 0.6 %黄石: 0.6 %黄石: 0.6 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他ChinaUnited States[]上海东莞临汾亳州保定信阳兰州北京十堰南京南充南通厦门台州合肥呼和浩特唐山嘉兴大同大连太原宁波宜昌宣城宿迁常德广州延安张家口成都扬州昆明晋城朝阳杭州武汉沈阳济南济宁济源淄博深圳湖州湛江漯河珠海石家庄福州秦皇岛芒廷维尤芝加哥衡阳衢州西宁西安西雅图贵阳运城通辽遵义邯郸郑州鄂州重庆铁岭银川长春长沙青岛黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (410) PDF downloads(12) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return