Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
TIAN Xiongchang, JIANG Shuihua, JIA Zhuo, LI Qin, FANG Lidong, ZHANG Yilin, XIAO Rui. WATER QUALITY EVALUATION AND CHANGE TREND ANALYSIS OF THE POYANG LAKE BASED ON KH-SVM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 72-78. doi: 10.13205/j.hjgc.202301009
Citation: TIAN Xiongchang, JIANG Shuihua, JIA Zhuo, LI Qin, FANG Lidong, ZHANG Yilin, XIAO Rui. WATER QUALITY EVALUATION AND CHANGE TREND ANALYSIS OF THE POYANG LAKE BASED ON KH-SVM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 72-78. doi: 10.13205/j.hjgc.202301009

WATER QUALITY EVALUATION AND CHANGE TREND ANALYSIS OF THE POYANG LAKE BASED ON KH-SVM

doi: 10.13205/j.hjgc.202301009
  • Received Date: 2022-03-10
    Available Online: 2023-03-23
  • To improve the accuracy of the water quality evaluation results, and reflect the quality status of the water environment more objectively, for the performance of support vector machines (SVM) is susceptible to the model parameters, this study presented an algorithm based on optimized SVM by krill clusters (krill herd, KH), and combined it with the surface water environmental quality standards. Five representative water quality indicators were selected as the input of the model, and five water quality standards were selected as the output. A water quality evaluation model based on KH-SVM as established, and the model was used to study the water quality status and change trend of the Poyang Lake in the high flow period, normal flow period and low flow period from 2013 to 2018. The results showed that the water quality of the Poyang Lake was basically maintained between category Ⅲ and Ⅳ Environment Quality Standard for Surface Water (GB 3838-2002), while it fluctuated greatly in each period, including mostly Ⅱ types and Ⅴ types in the wet season from 2013 to 2018, at the non-optimal level. The KH-SVM model performs well compared with the traditional evaluation method, and can reflect the water quality more accurately and objectively. The research results can provide a scientific basis for the scientific management of regional surface water resources and water environment protection. The results showed that the water quality in the North Lake area of the Poyang Lake was basically maintained between Class Ⅲ and Class Ⅳ, while the water quality in the South Lake area fluctuated greatly in different periods, with Class Ⅱ water in the high flow period and Class Ⅴ water in the normal and low flow periods. On the whole, the deterioration trend of the water quality in the Poyang Lake from 2013 to 2018 had not improved significantly, and the water quality level was still at the non-optimal level. The constructed KH-SVM model had a good performance. Compared with the traditional assessment methods, it could better realize the comprehensive assessment of water quality, and reflect the water quality status as a whole. The research can provide a scientific basis for the scientific management of regional surface water resources and water environment protection.
  • [1]
    鲁照, 黄河清, 徐力刚, 等. 基于熵权的WQI法在鄱阳湖水质评价中的应用[J]. 环境监测管理与技术, 2021, 33(4):30-34.
    [2]
    ZHANG Q H, DONG X H, CHEN Y W, et al. Hydrological alterations as the major driver on environmental change in a floodplain Lake Poyang (China):evidence from monitoring and sediment records[J]. Journal of Great Lakes Research, 2018, 44(3):377-387.
    [3]
    孙文浩, 卞建民, 李一涵, 等. 长白山北坡流域水资源涵养功能与矿泉水开发阈值研究[J]. 水资源与水工程学报, 2022, 33(3):89-97.
    [4]
    贾卓, 杨国华, 张赫轩, 等. 挠力河流域地下水氮污染特征分析[J].环境污染与防治, 2018, 40(4):418-422

    , 434.
    [5]
    JIA Z, BIAN J M, WANG Y. Impacts of urban land use on the spatial distribution of groundwater pollution, Harbin City, Northeast China[J]. Journal of Contaminant Hydrology, 2018, 215(aug.):29-38.
    [6]
    丛铭, 阳辉, 张晓静, 等.单因子法与可变模糊法在水质评价中的应用[J].南水北调与水利科技(中英文), 2021, 19(4):720-728.
    [7]
    李祚泳, 张正健.基于回归支持向量机的指标规范值的水质评价模型[J].中国环境科学, 2013, 33(8):1502-1508.
    [8]
    李茜, 张建辉, 林兰钰, 等.水环境质量评价方法综述[J].现代农业科技, 2011(19):285-287.
    [9]
    陈东清, 黄章树, 叶翀. 基于PSO-SVM模型的物流业景气指数组合预测研究[J]. 北京邮电大学学报(社会科学版), 2020, 22(6):52-62.
    [10]
    尹志勇, 陈永光, 桑博. 基于GA-SVM的电能质量扰动分类方法研究[J]. 河北工业大学学报, 2017, 46(4):75-79.
    [11]
    李力, 王鑫. 基于KH-SVM的大学生心理健康评价[J]. 微型电脑应用, 2021, 37(5):45-47

    , 51.
    [12]
    毛玉婷, 周晓宇, 王毛兰.枯水期鄱阳湖水体富营养化状态评价[J].南昌大学学报(理科版), 2014, 38(6):596-599.
    [13]
    江西省水利厅. 江西河湖大典[M]. 武汉:长江出版社, 2010.
    [14]
    赵志刚, 余德, 韩成云, 等. 2008-2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(2):198-208.
    [15]
    刘贺, 张奇, 牛媛媛, 等. 2013-2018年鄱阳湖水环境监测数据集[J]. 中国科学数据(中英文网络版), 2020, 5(2

    ):1-7.
    [16]
    刘新, 许梦文, 赵珍, 等. 鄱阳湖蝶形湖泊水体氮磷等的变化及污染初步评价[J]. 长江流域资源与环境, 2017, 26(8):1189-1198.
    [17]
    温春云, 刘聚涛, 胡芳, 等. 鄱阳湖水质变化特征及水体富营养化评价[J]. 中国农村水利水电, 2020(11):83-88.
    [18]
    沙海飞, 范丽丽.地表水溶解氧与化学需氧量、高锰酸盐指数的相关性研究[J].广州化工, 2021, 49(10):105-106

    , 110.
    [19]
    AMIR H G, AMIR H A. Krill herd:a new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4831-4845.
    [20]
    HOFMANN E E, EDWARD HASKELL A G, KCINCK J M, et al. Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation[J]. ICES Journal of Marine Science/Journal du Conseil, 2004, 61:617-631.
    [21]
    丁成, 王秋萍, 王晓峰. 基于广义反向学习的磷虾群算法及其在数据聚类中的应用[J]. 计算机应用, 2019, 39(2):336-342.
    [22]
    OLIVIER C, PATRICK H, VLADIMIR V, et al. Support vector machines for histogram-based image classification[J]. IEEE Transactions on Neural Networks, 1999, 10(5):1055-1055.
    [23]
    KANESAMOORTHY K, DISSANAYAKE M B. Prediction of treatment failure of tuberculosis using support vector machine with genetic algorithm[J]. International Journal of Mycobacteriology, 2021, 10(3):279-284.
    [24]
    郑丙辉, 刘琰. 地表水环境质量标准修订的必要性及其框架设想[J]. 环境保护, 2014, 42(20):39-41.
    [25]
    GARCÍ-NIETO P J, GARCÍA-GONZALO E, SÁNCHEZ-LASHERAS F J, et al. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability[J]. Reliability Engineering & System Safety, 2015, 138(Jun.):219-231.
    [26]
    MEHMET A T K, HUSEYIN S. Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms[J]. Ecological Indicators:Integrating, Monitoring, Assessment and Management, 2014, 36(Jan.):672-681.
  • Relative Articles

  • Cited by

    Periodical cited type(9)

    1. 崔芳,王华,曾一川,闫雨婷,陈经纬. 基于流域分区的鄱阳湖流域入湖总磷负荷估算. 中国农村水利水电. 2024(01): 189-196 .
    2. 章艳红,汪金坤,陈俊华,马文洁,葛勤,刘斌. 萍水河水质空间分布特征及水质评价对比研究. 有色金属(冶炼部分). 2024(03): 125-133 .
    3. 孙亮,王瑞国,袁瑞,杨树,李雨彤. 人工智能技术在智慧水利中的应用与展望. 中国水利. 2024(03): 44-51 .
    4. 王力源,周贺,秦梦,史密伟,郑翔. 白洋淀上游流经城区前后细菌群落结构和功能与环境因子的关联研究. 生态毒理学报. 2024(02): 333-348 .
    5. 陈雪,徐富刚,李琴,肖睿,谢亨旺,邓海龙,贾卓. 基于水情变化的河流生态流量阈值及多时间尺度保障率计算. 水资源保护. 2024(04): 128-136+156 .
    6. 钟佳慧,张燕萍,吴子君,余建芳,阙祥尧,侯明勇,丁国栋,张子莹,刘文鼎,熊文清,章海鑫. 环鄱阳湖地区池塘养殖水环境现状分析. 江西水产科技. 2024(04): 43-47 .
    7. 杨晶,路恒通,金鑫,产青青,张家旋,杨一帆,李思敏. 机器学习赋能智慧水利的现实基础、应用现状及发展前景. 水利水电技术(中英文). 2024(10): 137-147 .
    8. 徐存东,沈家兴,李嘉明,田俊姣,胡小萌. 基于熵权-云模型理论的河网水环境质量评价. 水电能源科学. 2024(12): 64-67+110 .
    9. 王庆. 基于分类树和雷达图的城市河道排污口溯源方法. 绿色科技. 2023(14): 106-111 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.9 %FULLTEXT: 14.9 %META: 82.5 %META: 82.5 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.6 %其他: 14.6 %其他: 0.3 %其他: 0.3 %Austin: 0.3 %Austin: 0.3 %Norman: 0.5 %Norman: 0.5 %上海: 2.1 %上海: 2.1 %上饶: 0.3 %上饶: 0.3 %临汾: 0.3 %临汾: 0.3 %休斯敦: 0.3 %休斯敦: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.3 %兰州: 0.3 %北京: 3.1 %北京: 3.1 %南京: 2.6 %南京: 2.6 %南昌: 1.8 %南昌: 1.8 %南通: 0.3 %南通: 0.3 %卡蒂: 0.3 %卡蒂: 0.3 %台州: 0.5 %台州: 0.5 %合肥: 2.6 %合肥: 2.6 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.8 %咸阳: 0.8 %嘉兴: 0.5 %嘉兴: 0.5 %大同: 0.5 %大同: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.8 %常州: 0.8 %常德: 0.8 %常德: 0.8 %平顶山: 0.3 %平顶山: 0.3 %广州: 1.0 %广州: 1.0 %张家口: 2.9 %张家口: 2.9 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %无锡: 0.8 %无锡: 0.8 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.8 %朝阳: 0.8 %杭州: 0.3 %杭州: 0.3 %桂林: 0.3 %桂林: 0.3 %榆林: 0.8 %榆林: 0.8 %武汉: 2.1 %武汉: 2.1 %沈阳: 0.3 %沈阳: 0.3 %济源: 0.3 %济源: 0.3 %海口: 0.3 %海口: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.5 %湖州: 0.5 %漯河: 0.3 %漯河: 0.3 %澳门: 0.3 %澳门: 0.3 %烟台: 0.3 %烟台: 0.3 %玉林: 0.8 %玉林: 0.8 %盐城: 0.3 %盐城: 0.3 %福州: 0.3 %福州: 0.3 %纽卡斯尔: 0.3 %纽卡斯尔: 0.3 %纽约: 0.5 %纽约: 0.5 %芒廷维尤: 24.0 %芒廷维尤: 24.0 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 1.0 %芝加哥: 1.0 %蚌埠: 1.0 %蚌埠: 1.0 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.5 %衢州: 0.5 %西宁: 11.2 %西宁: 11.2 %西安: 0.5 %西安: 0.5 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 1.3 %贵阳: 1.3 %运城: 2.3 %运城: 2.3 %遵义: 0.8 %遵义: 0.8 %郑州: 0.5 %郑州: 0.5 %重庆: 1.3 %重庆: 1.3 %镇江: 0.3 %镇江: 0.3 %长治: 0.3 %长治: 0.3 %青岛: 0.8 %青岛: 0.8 %香港: 0.3 %香港: 0.3 %其他其他AustinNorman上海上饶临汾休斯敦保定兰州北京南京南昌南通卡蒂台州合肥呼和浩特咸阳嘉兴大同大连天津太原密蘇里城常州常德平顶山广州张家口成都扬州无锡昆明晋城朝阳杭州桂林榆林武汉沈阳济源海口温州湖州漯河澳门烟台玉林盐城福州纽卡斯尔纽约芒廷维尤芜湖芝加哥蚌埠衡水衡阳衢州西宁西安西雅图贵阳运城遵义郑州重庆镇江长治青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (314) PDF downloads(11) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return