Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014
Citation: GUO Yake, GAO Yanyan, QIAN Hui, TANG Shunqi, WANG Haike, SHI Xiaoxin. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 112-119. doi: 10.13205/j.hjgc.202301014

SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS AND HEALTH RISK ASSESSMENT OF HEAVY METALS IN THE CHU RIVER BASIN

doi: 10.13205/j.hjgc.202301014
  • Received Date: 2022-03-08
    Available Online: 2023-03-23
  • In order to clarify the harmful degree of heavy metal pollution in the surface river water under the influence of pyrite, we took Chu River, a tributary of Han River, as the research object, and then selected the sections from the pyrite mining area to the entrance of Chu River into Ren River, to study the distribution characteristics of Fe, Mn, Cu, Zn, Cd and Cr in river water during different water periods. In addition, the health risk assessment model was used to evaluate the health risk of heavy metals in surface water in the two seasons. The results showed that:there were significant spatial and temporal differences in the distribution of heavy metals in rivers. In terms of time, excessive Fe and Cr existed in the dry season. Heavy metals were diluted in the river during the wet season, and the change in the river water environment led to the migration and transformation of heavy metals, so the overall water quality was improved. Spatially, affected by the distance from the mining area and rainy season, the concentration in the middle and upper reaches increased significantly when it was close to the mining area, and the influence of human activities downstream was also significant. The results of the health risk assessment showed that there was a non-carcinogenic risk in the middle reaches of the river in dry season. The order of non-carcinogenic risk of heavy metals was Cr>Cd>Fe>Cu>Mn>Zn. Heavy metal Cr had a significant carcinogenic risk to human body, and Cd had a significant carcinogenic risk to children in dry season. The study puts forward definite measures and suggestions to enhance the mine and river environment.
  • loading
  • [1]
    ARTO I, ANDREONI V, RUEDA-CANTUCHE J M. Global use of water resources:a multiregional analysis of water use, water footprint and water trade balance[J]. Water Resources & Economics, 2016, 15(Complete):1-14.
    [2]
    YING O. Evaluation of river water quality monitoring stations by principal component analysis[J]. Water Research, 2005, 39(12):2621-2635.
    [3]
    张福祥, 崔嵩, 朱乾德, 等. 七星河湿地水环境重金属污染特征与风险评价[J]. 环境工程, 2020, 38(10):68-75.
    [4]
    乔飞, 时瑶, 秦延文, 等. 岷江干流重金属空间分布特征及污染评价[J]. 环境工程技术学报, 2018, 8(6):602-609.
    [5]
    华祖林, 王苑. 水动力作用下河湖沉积物污染物释放研究进展[J]. 河海大学学报(自然科学版), 2018, 46(2):95-105.
    [6]
    余杨, 吕雅宁, 王伟杰, 等. 乐安河中下游重金属时空分布特征及风险评价[J]. 环境科学, 2020, 41(2):691-701.
    [7]
    郭掌珍, 张渊, 李维宏, 等. 汾河表层沉积物中营养盐和重金属的含量、来源和生态风险[J]. 水土保持学报, 2013, 27(3):95-99.
    [8]
    USMAN Q A, MUHAMMAD S, ALI W, et al. Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan:evaluation of pollution and potential risks[J]. Environmental Technology & Innovation, 2020, 21:101184.
    [9]
    王辉, 赵悦铭, 刘春跃, 等. 辽河干流沉积物重金属污染特征及潜在生态风险评价[J]. 环境工程, 2019, 37(11):65-69.
    [10]
    周芬琦, 王小芳, 赵新如, 等. 安徽庐江尾矿区河流重金属分布及污染评价[J]. 环境化学, 2020, 39(10):2792-2803.
    [11]
    刘蕊, 张辉, 勾昕, 等. 健康风险评估方法在中国重金属污染中的应用及暴露评估模型的研究进展[J]. 生态环境学报, 2014(7):1239-1244.
    [12]
    徐美娟, 鲍波, 陈春燕, 等. 宁波市地表水重金属污染现状和健康风险评价[J]. 环境科学, 2018(2):729-737.
    [13]
    YARAGHI N, RONKANEN A K, HAGHIGHI A T, et al. Impacts of gold mine effluent on water quality in a pristine sub-Arctic river[J]. Journal of Hydrology, 2020, 589(1):125170.
    [14]
    余楚, 李剑锋, 吕敦玉. 大兴安岭南段某矿区河流表层沉积物重金属污染及风险评价[J]. 生态环境学报, 2021, 30(11):2223-2231.
    [15]
    王宇彤. 沉积物中重金属迁移释放规律研究[D]. 徐州:中国矿业大学, 2021.
    [16]
    KIM E, LITTLE J C, CHIU N. Estimating exposure to chemical contaminants in drinking water[J]. Environmental Science & Technology, 2004, 38(6):1799-1806.
    [17]
    高燕燕. 关中平原地下水化学成分时空演化规律及人体健康风险评价[D]. 西安:长安大学, 2020.
    [18]
    杨仝锁, 郑西来, 许延营, 等. 青岛市黄岛区饮用水源健康风险评价[J]. 安全与环境学报, 2008, 8(2):83-86.
    [19]
    赵瑞一, 黄淑卿, 张乾柱, 等. 荥经河重金属分布特征及健康风险评价[J]. 三峡生态环境监测, 2021, 6(4):24-31.
    [20]
    杜维, 李爱民, 鲁敏, 等. 长江武汉段水质重金属健康风险初步评价[J]. 环境科学与技术, 2014, 37(增刊2):535-539.
    [21]
    张昕雨. 黑河上中游重金属污染特征及生态风险评价[D]. 兰州:兰州理工大学, 2021.
    [22]
    ATKINSON C A, JOLLEY D F, SIMPSON S L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments[J]. Chemosphere, 2007, 69(9):1428-1437.
    [23]
    张浩, 王辉, 汤红妍, 等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报, 2020, 40(3):1085-1094.
    [24]
    张婉军, 辛存林, 于奭, 等. 柳江流域河流溶解态重金属时空分布及污染评价[J]. 环境科学, 2021, 42(9):4234-4245.
    [25]
    肖洋, 成浩科, 唐洪武, 等. 水动力作用对污染物在河流水沙两相中分配的影响研究进展[J]. 河海大学学报(自然科学版), 2015, 43(5):480-488.
    [26]
    黄建枝, 葛小鹏, 王东升. 水动力条件下重金属在沉积物上的吸附及其形态分布与转化[J]. 环境工程学报, 2013, 7(6):2025-2032.
    [27]
    张利瑞, 彭鑫波, 马延龙, 等. 兰州市耕地"五毒"重金属的风险评价与归因分析[J]. 环境科学, 2022, 43(9):4767-4778.
    [28]
    刘昭, 周宏, 刘伟, 等. 清江流域地下水重金属含量特征及健康风险初步评价[J]. 环境工程, 2021, 39(5):196-203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (168) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return