Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHI Liehui, ZHANG Zhe, BAI Junhong, LI Xiaowen. RESEARCH ON THE CARRYING CAPACITY OF TOURISM ENVIRONMENT IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 132-140,163. doi: 10.13205/j.hjgc.202301016
Citation: ZHI Liehui, ZHANG Zhe, BAI Junhong, LI Xiaowen. RESEARCH ON THE CARRYING CAPACITY OF TOURISM ENVIRONMENT IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 132-140,163. doi: 10.13205/j.hjgc.202301016

RESEARCH ON THE CARRYING CAPACITY OF TOURISM ENVIRONMENT IN THE YELLOW RIVER DELTA

doi: 10.13205/j.hjgc.202301016
  • Received Date: 2022-10-11
    Available Online: 2023-03-23
  • The development of tourism should pay attention to the coordination and order of ecology and social economy. Ecotourism takes into account regional economic development and ecological protection, conforms to the development strategy of efficient ecological economy, and is an important part of the industrial structure of the efficient ecological economic zone in the Yellow River Delta. However, tourism started late and developed slowly in the efficient ecological economic zone of the Yellow River Delta. At the same time, the fragile ecological environment and reclamation activities make the importance of ecological protection in tourism development and tourism activities of this region particularly prominent. This study evaluated the ecological, spatial, facility and social environmental carrying capacities by building a multi-level evaluation model of tourism environmental carrying capacity and relying on the minimum limiting factor method, in order to identify the major limiting factors of the tourism environmental carrying capacity of the study area and to diagnose the major issues affecting the carrying capacity of the area. The result showed that:1) the tourism carrying capacity between 1995 and 2020 was severely overloaded, and the tourism environmental capacity of the high-efficiency ecological economic zone in the Yellow River Delta increased from -2885700 people per day to 116000 people per day in 2020. 2) Sewage treatment was the minimum limiting factor in 1995, and transportation facilities was the minimum limiting factor in 2020. Only the two indicators were overloaded, other indicators were weak load; all other indications were either not loaded or only slightly loaded. 3) In 1995, the carrying capacity of tourism environment was mainly limited by the capacity of ecological environment, while in 2020, space>social>ecological>facilities were the secondary indicators of the Yellow River Delta's high-efficiency ecological economic zone's environmental capacity. 4) The overcrowding of tourism facilities in the Yellow Delta contradicted the underutilization of resources and the weak loading of the ecological and spatial environments, including wetland ecological indicators. However, there was still enough of potential for tourist expansion from appropriate loading. The carrying capacity of the biological environment had decreased during the past 25 years, despite a general increase in the capacity of the tourism environment due to a more rapid increase in visitor numbers. In this paper, we clarified the tourism development space that wetland ecology could support, identified the main limiting factors of tourism development, and analyzed the tourism development status of high-efficiency ecological economic zones in the Yellow River Delta from the perspective of tourism environmental carrying capacity. The research results also provided scientific basis and data support for solving the problem of environmental overload and weak load, realizing the rational use of resources and promoting the orderly and coordinated development of regional eco-economy.
  • [1]
    翁钢民, 李建璞, 杨秀平, 等.近20年国内外旅游环境承载力研究动态[J].地理与地理信息科学, 2021, 37(1):106-115.
    [2]
    赵勇为, 贺小荣, 黄静波.休闲旅游城市旅游环境承载力评价研究——以郴州市为例[J].湘南学院学报, 2017, 38(6):21-27

    , 52.
    [3]
    翁钢民, 杨秀平, 李慧盈.国内外旅游环境承载力研究的发展历程与展望[J].生态经济, 2015, 31(8):129-132.
    [4]
    LIME D W, STANKEY G H. Carrying capacity:maintaining outdoor recreation quality:Recreation symposium proceedings[C].USDA Forest Service Syracuse, New York, 1971:173-179.
    [5]
    ELIO C, PAOLO C.Tourist carrying capacity:a fuzzy approach Annals of Tourism Research, 1991(18):295-311.
    [6]
    TONY P.Modeling carrying capacity for national parks[J].Ecological Economics, 2001(39):321-331.
    [7]
    STEVEN R L, ROBERT E, WILLIAN A.Proactive monitoring and adaptive management of social carrying capacity in Arches National Park:an application of computer simulation modeling[J].Environment Management, 2003(68):305-313.
    [8]
    刘晓冰, 保继刚.旅游开发的环境影响研究进展[J].地理研究, 1996(4):92-100.
    [9]
    保继刚. 颐和园旅游环境容量研究[J].中国环境科学, 1987, 7(2):32-38.
    [10]
    刘玲. 旅游环境承载力研究[M].中国环境科学出版社, 2000:418.
    [11]
    赖明州, 薛怡珍.雪霸公园雪山主峰线之承载量研究[J].生态学杂志, 2003, 22(1):94-96.
    [12]
    张广海, 刘佳. 山东半岛城市群旅游环境承载力地域差异与功能分区[J].地域研究与开发, 2008, 27(4):77-80.
    [13]
    中华人民共和国国务院新闻办公室.黄河三角洲高效生态经济区发展规划[EB\\OL].http://www.scio.gov.cn/ztk/xwfb/04/4/Document/542283/542283.html.
    [14]
    孙宏瑗.黄河三角洲每年吸引近600万只鸟类停靠择"地"而栖[EB/OL]. http://www.sd.chinanews.com.cn/2/2020/0921

    /74954.html.
    [15]
    山东省文化和旅游厅. 山东省A级旅游景区名录[EB/OL].http://whhly.shandong.gov.cn/art/2020/4/24/art_100526_9032316.html.
    [16]
    中华人民共和国文化和旅游部. 旅游行业标准LB/T034-2014景区最大承载量核定工作导则[EB/OL]. https://zwgk.mct.gov.cn/zfxxgkml/hybz/202012/t20201224_920037.html.
    [17]
    中华人民共和国生态环境部.生活污染源排污系数手册[EB/OL].https://www.mee.gov.cn/.
    [18]
    连云港市生态环境局. 中国城市生活垃圾管理状况评估报告[EB/OL].http://hbj.lyg.gov.cn/lygshbj/gnhbdt/content/42ff4fc7-ef09-40f4-a17e-8622ff1d1d18.html.
    [19]
    中华人民共和国建设部.《风景名胜区规划规范》(GB 50298-1999)[EB/OL]. http://ylj.fuzhou.gov.cn/zz/zwgk/fgzd/ylfg/201601/P020170327419887997593.doc.
    [20]
    中华人民共和国住房和城乡建设部.风景名胜区总体规划标准[EB/OL]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201903/20190320_239842.html.
    [21]
    国家统计局.中国统计年鉴[J].北京:中国统计出版社, 1996.
    [22]
    国家统计局.中国统计年鉴[J].北京:中国统计出版社, 2021.
    [23]
    山东省统计局.山东省统计年鉴[J].北京:中国统计出版社, 1996.
    [24]
    山东省统计局.山东省统计年鉴[J].北京:中国统计出版社, 2021.
    [25]
    东营市统计局.东营市统计年鉴[J].北京:中国统计出版社, 1996.
    [26]
    东营市统计局.东营市统计年鉴[J].北京:中国统计出版社, 2021.
    [27]
    滨州市统计局.滨州市统计年鉴[J].北京:中国统计出版社, 1996.
    [28]
    滨州市统计局.滨州市统计年鉴[J].北京:中国统计出版社, 2021.
    [29]
    潍坊市统计局.潍坊市统计年鉴[J].北京:中国统计出版社, 1996.
    [30]
    潍坊市统计局.潍坊市统计年鉴[J].北京:中国统计出版社, 2021.
    [40]
    德州市统计局.德州市统计年鉴[J].北京:中国统计出版社, 1996.
    [41]
    德州市统计局.德州市统计年鉴[J].北京:中国统计出版社, 2021.
    [42]
    乐陵市统计局.乐陵市统计年鉴[J].北京:中国统计出版社, 2021.
    [43]
    烟台市统计局.烟台市统计年鉴[J].北京:中国统计出版社, 1996.
    [44]
    烟台市统计局.烟台市统计年鉴[J].北京:中国统计出版社, 2021.
    [45]
    莱州市统计局.莱州市统计年鉴[J].北京:中国统计出版社, 2021.
    [46]
    淄博市统计局.淄博市统计年鉴[J].北京:中国统计出版社, 1996.
    [47]
    淄博市统计局.淄博市统计年鉴[J].北京:中国统计出版社, 2021.
    [48]
    高青县统计局.高青县统计年鉴[J].北京:中国统计出版社, 2021.
    [49]
    马田田. 黄河三角洲受损滨海湿地修复系统优化调控研究[D].北京:北京师范大学, 2019.
    [50]
    智烈慧, 李心, 马田田, 等. 辽河三角洲土地利用变化轨迹、驱动过程及生态系统服务时空演变[J]. 环境科学学报, 2022, 42:141-150.
    [51]
    李艳茹.山东全省建成城市污水处理厂304座, 污水处理能力1370万吨/日[EB/OL].https://www.h2o-china.com/news/253414.html.
    [52]
    吴正奎.官鹅沟国家地质公园旅游环境容量测评及发展策略探讨[D].兰州:西北师范大学, 2015.
    [53]
    澎湃新闻网, 国家林业局:中国人均湿地面积仅为世界1/5, 亟需恢复扩大[EB/OL].https://www.thepaper.cn/newsDetail_forward_1518804.
    [54]
    赵焕焱.中国住宿业三千年[EB/OL].http://www.gxhma.cn/page158?article_id=342&pagenum=2.
    [55]
    林丽花.林芝地区生态旅游环境容量研究[D].拉萨:西藏大学, 2009.
    [56]
    刘博. 黄河三角洲典型滨鸟食性特征的时空差异性研究[D].山东:烟台大学, 2019.
    [57]
    吕丽. 黄河三角洲湿地鸟类多样性及其生境选择[D].山东:山东农业大学, 2019.
    [58]
    葛海燕.黄河三角洲自然保护区湿地恢复对鸟类的影响[J].山东林业科技, 2012, 42(5):30-33

    , 21.
    [59]
    ZHI L H, LI X W, BAI J H, et al. Seawall-induced impacts on large river delta wetlands and blue carbon storage under sea level rise[J]. Science of the Total Environment, 2022, 159891.
    [60]
    山东省自然资源厅.山东治理荒漠化沙化成效显著[EB/OL].https://www.eco.gov.cn/news_info/46012.html.
    [61]
    方荣辉.黄河三角洲旅游城市空间结构的联动发展研究[J].石家庄学院学报, 2014, 16(3):50-54.
    [62]
    东营市交通运输局.东营市综合交通运输中长期发展规划[EB/OL]. http://dyjt.dongying.gov.cn/art/2021/1/8/art_37006_10290058.html.
    [63]
    任建成, 王明涛, 郑宝枝.滨州市旅游资源评价及开发策略研究[J].中国人口. 资源与环境, 2016, 26(增刊2):283-286.
    [64]
    邢倩, 李仁杰, 郭风华, 等.一种新的客源地集中指数(tourCI)与实证分析[J].地理科学进展, 2022, 41(7):1261-1273.
  • Relative Articles

    [1]TONG Jingzhe, NI Changjian, MI Jiayuan, JIANG Mengjiao, ZHANG Ying, SHI Qiaoyu. A BP NEURAL NETWORK MODEL OF AEROSOL SCATTERING HYGROSCOPIC GROWTH FACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 131-137,165. doi: 10.13205/j.hjgc.202307018
    [2]WEI Qing, CHEN Yongqi, XIE Yifan, LIN Jingying, YIN Hailong. POLLUTION MECHANISM OF WET-WEATHER PUMPING DISCHARGE IN SEPARATED STORMWATER DRAINAGE SYSTEMS BASED ON ARTIFICIAL NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 54-60,181. doi: 10.13205/j.hjgc.202312006
    [3]LI Yuanyuan, LIU Hailong. PREDICTION OF TOTAL PHOSPHORUS IN RIVERS BASED ON ATTENTION MECHANISM OF TEMPORAL CONVOLUTIONAL NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 163-171. doi: 10.13205/j.hjgc.202305022
    [4]PAN Siyu, ZHANG Meiling. PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 61-68,85. doi: 10.13205/j.hjgc.202307009
    [5]YU Feng, WANG Kejia, ZHANG Wenlong, LI Yi. PREDICTION OF COAGULANT DOSAGE FOR IN-SITU TURBIDITY CONTROL IN WATER ECOLOGICAL RESTORATION BASED ON BP NEURAL NETWORK OPTIMIZED BY GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 154-163. doi: 10.13205/j.hjgc.202304022
    [6]XIE Wei, XU Jiao, LIN Zhiguo, YAN Di, ZHANG Yinglei. RESEARCH ON REAL-TIME SOURCE APPORTIONMENT METHOD OF VOCs BASED ON BP NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 231-238. doi: 10.13205/j.hjgc.202212031
    [7]GUO Zirui, CHEN Zhiqiang, CHI Riguang, SHEN Aihua. PREDICTION OF POLYHYDROXYALKANOATE (PHA) PRODUCTION UTILIZING FOOD WASTE BASED ON GA-BP NEURAL NETWORK METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 166-173. doi: 10.13205/j.hjgc.202204024
    [8]YU Shen-ting, LIU Ping. LONG SHORT-TERM MEMORY-CONVOLUTION NEURAL NETWORK (LSTM-CNN) FOR PREDICTION OF PM2.5 CONCENTRATION IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 176-180,66. doi: 10.13205/j.hjgc.202006029
    [9]LIANG Tao, XIE Gao-feng, MI Da-bin, JIANG Wen. PREDICTION OF PM10 CONCENTRATION BASED ON CEEMDAN-SE AND LSTM NEURAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 107-113. doi: 10.13205/j.hjgc.202002015
    [13]Ren Jinxia Yu Zhiwu You Xin, . MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 144-148. doi: 10.13205/j.hjgc.201505031
  • Cited by

    Periodical cited type(6)

    1. 张亮,杨博文,刘宇衡,张雨,高瑜,李佳诚,李俊辰,林斯杰. 基于机器视觉的生化池监测技术. 环境工程. 2025(03): 1-10 . 本站查看
    2. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较. 环境工程. 2024(03): 254-260 . 本站查看
    3. 冯丁,刘晶静,马文丹,刘玉学,杨尘,张萌萌. 基于机器学习的生物炭吸附重金属建模研究进展. 工业水处理. 2024(12): 1-11 .
    4. 王文胜,年诚旭,张超,阎如鹏,吴鑫全,张歆博. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计. 环境工程. 2022(03): 159-165 . 本站查看
    5. 李长江,余海涛,李官星,李玥洋,谭雯文. 基于SqueezeNet-Tiny的可回收垃圾智能垃圾桶设计及实现. 现代信息科技. 2022(17): 75-77 .
    6. 亢红波,蔡学瑞,杨亮,周倩倩. 一种智能垃圾分类装置设计. 西安邮电大学学报. 2022(05): 60-66 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 86.9 %META: 86.9 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.1 %其他: 17.1 %其他: 1.1 %其他: 1.1 %China: 0.6 %China: 0.6 %Howard: 0.2 %Howard: 0.2 %上海: 8.1 %上海: 8.1 %东莞: 4.3 %东莞: 4.3 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %亚特兰大: 0.2 %亚特兰大: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 1.3 %佛山: 1.3 %保定: 1.9 %保定: 1.9 %北京: 3.4 %北京: 3.4 %十堰: 0.2 %十堰: 0.2 %南京: 1.1 %南京: 1.1 %台州: 1.5 %台州: 1.5 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.2 %呼和浩特: 0.2 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %嘉兴: 0.6 %嘉兴: 0.6 %大同: 0.2 %大同: 0.2 %大连: 1.7 %大连: 1.7 %天津: 2.1 %天津: 2.1 %太原: 0.2 %太原: 0.2 %安大略: 0.2 %安大略: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.4 %密蘇里城: 0.4 %常德: 0.6 %常德: 0.6 %广州: 2.4 %广州: 2.4 %张家口: 0.2 %张家口: 0.2 %意法半: 0.2 %意法半: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.9 %扬州: 0.9 %无锡: 0.2 %无锡: 0.2 %昆明: 1.1 %昆明: 1.1 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.2 %杭州: 3.2 %杰克逊维尔: 0.2 %杰克逊维尔: 0.2 %桂林: 0.2 %桂林: 0.2 %武汉: 1.1 %武汉: 1.1 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.2 %泰安: 0.2 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.6 %济南: 0.6 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %湖州: 0.9 %湖州: 0.9 %漯河: 2.6 %漯河: 2.6 %濮阳: 0.2 %濮阳: 0.2 %焦作: 0.4 %焦作: 0.4 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %绥化: 0.4 %绥化: 0.4 %芒廷维尤: 5.8 %芒廷维尤: 5.8 %芝加哥: 1.1 %芝加哥: 1.1 %衡水: 2.1 %衡水: 2.1 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.3 %西宁: 14.3 %西安: 0.2 %西安: 0.2 %贵阳: 0.6 %贵阳: 0.6 %运城: 1.7 %运城: 1.7 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.6 %鄂州: 0.6 %重庆: 1.1 %重庆: 1.1 %金华: 0.2 %金华: 0.2 %长沙: 1.9 %长沙: 1.9 %青岛: 0.4 %青岛: 0.4 %其他其他ChinaHoward上海东莞临汾乌鲁木齐亚特兰大伦敦佛山保定北京十堰南京台州合肥呼和浩特和田哈尔滨嘉兴大同大连天津太原安大略宜春宣城密蘇里城常德广州张家口意法半成都扬州无锡昆明晋城朝阳杭州杰克逊维尔桂林武汉汕头沈阳泰安洛杉矶济南深圳温州湖州漯河濮阳焦作石家庄福州绥化芒廷维尤芝加哥衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (185) PDF downloads(10) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return