Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
HAN Longxi, ZHANG Yi, WANG Chenfang, JIANG Anqi, SUN Mingyuan, ZHOU Xingchen. EFFECT OF WAVES ON RELEASE MECHANISM OF SETTLING HYDROPHOBIC POLLUTANTS FROM THE RIVERBED: A CASE STUDY ON DICHLOROMETHANE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 141-148. doi: 10.13205/j.hjgc.202301017
Citation: HAN Longxi, ZHANG Yi, WANG Chenfang, JIANG Anqi, SUN Mingyuan, ZHOU Xingchen. EFFECT OF WAVES ON RELEASE MECHANISM OF SETTLING HYDROPHOBIC POLLUTANTS FROM THE RIVERBED: A CASE STUDY ON DICHLOROMETHANE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 141-148. doi: 10.13205/j.hjgc.202301017

EFFECT OF WAVES ON RELEASE MECHANISM OF SETTLING HYDROPHOBIC POLLUTANTS FROM THE RIVERBED: A CASE STUDY ON DICHLOROMETHANE

doi: 10.13205/j.hjgc.202301017
  • Received Date: 2022-01-13
    Available Online: 2023-03-23
  • This research is intended to study the effect of waves on the release of settling hydrophobic pollutants, which have been deposited on the riverbed surface after sudden water pollution accidents. Those contaminants will slowly diffuse from the riverbed into the overlying water body through hydrodynamic action, causing ongoing and serious water pollution. By taking dichloromethane as a typical contaminant, the response relationship between the release strength and wave elements (wave height, wave period) were analyzed through flume experiments. The mathematical regression model between the release flux and wave dynamics factors were established. The results suggested that wave disturbance caused the obvious release of settling hydrophobic pollutants. The TVC of suspended particles in DCM increased with the increase of wave height and decreases with the increase of wave period. For the same wave period, there was a significant exponential positive correlation between the release flux and wave height (R2>0.973). For the same wave height, there was a significant logarithmic negative correlation between the release flux and the wave period (R2>0.967). Besides, the mathematical relationships between the release flux and wave dynamic factors were established. Thus, this study offered a solution to solve the source term quantification problem of the differential equation of convective diffusion, which can provide the basis for further developing the mathematical models of these pollutants.
  • loading
  • [1]
    侯立安. 新兴科技保障中国的水安全[R]. 北京:第三届化学与环境工程前沿论坛, 2018.
    [2]
    吴小刚, 尹定轩, 宋洁人, 等. 我国突发性水资源污染事故应急机制的若干问题评述[J]. 水资源保护, 2006, 22(2):76-79.
    [3]
    ZHANG Y, SUN M Y, HAN L X. Numerical simulation of the effects on residual chlorine water discharge from lng on the ocean water environment[C]//2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development (eesed 2016), France:Atlantis Press, 2016:15-19.
    [4]
    XU M, CHUA V P. A numerical study on land-based pollutant transport in singapore coastal waters with a coupled hydrologic-hydrodynamic model[J]. Journal of Hydro-environment Research, 2017, 14(MAR.):119-142.
    [5]
    LI H, YAN L, CHENG L, et al. Numerical simulation study on drift and diffusion of dalian oil spill[J]. Iop Conference Series Earth and Environmental Science, 2017, 52(1):012099.
    [6]
    BOZKURTOLU S, ERTVRK E N. Modeling oil spill trajectory in bosphorus for contingency planning[J]. Marine Pollution Bulletin, 2017, 123(1/2):57-72.
    [7]
    韩龙喜, 张琳, 金文龙, 等. 基于油粒子模型的水库水质应急预警[J]. 河海大学学报(自然科学版), 2013, 41(2):120-124.
    [8]
    FAGHIHIFARD M, BADRI M A. Simulation of oil pollution in the persian gulf near assaluyeh oil terminal[J]. Marine Pollution Bulletin, 2016, 105(1):143-149.
    [9]
    MACKAY D I, PATERSON S. Finding fugacity feasible[J]. Environmental Science & Technology, 1979, 13(10):1218-1223.
    [10]
    刘世杰, 吕永龙, 史雅娟. 持久性有机污染物环境多介质空间分异模型研究进展[J]. 生态毒理学报, 2011, 6(2):129-137.
    [11]
    李连峰. 船载散装难溶保守液体化学品泄漏扩散研究[D]. 大连:大连海事大学, 2009.
    [12]
    张连丰. 散装液体化学品海上泄漏事故应急决策系统研究[D]. 大连:大连海事大学, 2003.
    [13]
    王琛. 突发化学品排放事件在平原河网中的风险场预警模拟技术研究[D]. 上海:同济大学, 2009.
    [14]
    STEINBERG L J, RECKHOW K H, WOLPERT R L. Characterization of parameters in mechanistic models:a case study of a pcb fate and transport model[J]. Ecological Modelling, 1997, 97(1):35-46.
    [15]
    LIU R P, LIU H J, WAN D J, et al. Characterization of the songhua river sediments and evaluation of their adsorption behavior for nitrobenzene[J]. Journal of Environmental Sciences, 2008, 20(7):796-802.
    [16]
    SANDY A L, JIA G, MISKEWITZ R J, et al. Mass transfer coefficients for volatilization of polychlorinated biphenyls from the hudson river, new york measured using micrometeorological approaches[J]. Chemosphere, 2013, 90(5):1637-1643.
    [17]
    ZHANG Y, HAN L X, CHEN B, et al. Effect of water flow on the release flux of dense non-aqueous phase liquids from the riverbed-take dichloromethane as an example[J]. Journal of Environmental Science and Health, Part a, 2021, 56(7):723-732.
    [18]
    顾杰, 冒小丹, 匡翠萍, 等. 间歇性波浪扰动下河口底泥中磷释放特性研究[J]. 水动力学研究与进展(A辑), 2016, 31(6):751-759.
    [19]
    李伟, 李晓燕, 杨健. 二氯甲烷的生产及消费[J]. 河北化工, 1997(4):36-37.
    [20]
    智研咨询集团. 2019-2025年中国二氯甲烷市场深度调研及未来发展前景策略分析报告[R]. 北京:中研普华, 2018.
    [21]
    有毒有害大气污染物名录(2018年)[S]. 北京:生态环境部、卫生健康委, 2018.
    [22]
    有毒有害水污染物名录(第一批)[S]. 北京:生态环境部、卫生健康委, 2019.
    [23]
    GRANT W D, MADSEN O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research:Oceans, 1979, 84(C4):1797-1808.
    [24]
    夏云峰, 徐华, 陈中, 等. 粉沙质海岸波流作用下水体含沙量及其垂线分布试验研究[J]. 海洋工程, 2010, 28(4):84-89.
    [25]
    MADSEN O. Wave climate of the continental margin:elements of its mathematical description[J]. Marine Sediment Transport in Environmental Management, 1976, 1:65-90.
    [26]
    申霞, 洪大林, 丁艳青, 等. 太湖疏浚前后波浪扰动下的底泥再悬浮特征[J]. 水科学进展, 2011, 22(4):580-585.
    [27]
    刘辉. 黄河水下三角洲沉积物再悬浮通量研究[D]. 青岛:中国海洋大学, 2011.
    [28]
    窦国仁. 再论泥沙起动流速[J]. 泥沙研究, 1999(6):1-9.
    [29]
    汪亚平, 高抒, 贾建军. 海底边界层水流结构及底移质搬运研究进展[J]. 海洋地质与第四纪地质, 2000, 20(3):101-106.
    [30]
    LORKE A, PEETERS F, WVEST A. Shear-induced convective mixing in bottom boundary layers on slopes[J]. Limnology and Oceanography, 2005, 50(5):1612-1619.
    [31]
    TROWBRIDGE J, LENTZ S. Dynamics of the bottom boundary layer on the northern california shelf[J]. Journal of Physical Oceanography, 1998, 28(10):2075-2093.
    [32]
    MADSEN O S, WIKRAMANAYAKE P N. Simple models for turbulent wave-current bottom boundary layer flow[R]. Massachusetts:Massachusetts Inst of Tech Cambridge Ralph M Parsons Lab for Water Resources, 1991.
    [33]
    BRINK K. On the effect of bottom friction on internal waves[J]. Continental Shelf Research, 1988, 8(4):397-403.
    [34]
    LI Z W, TANG H W, XIAO Y, et al. Factors influencing phosphorus adsorption onto sediment in a dynamic environment[J]. Journal of Hydro-environment Research, 2016, 10(1):1-11.
    [35]
    李青峰, 程永舟, 韩二品, 等. 破碎波作用下床面形态研究及泥沙受力分析[J]. 水利水运工程学报, 2015(4):22-27.
    [36]
    刘彦, 纪平, 赵懿珺, 等. 波浪对温差异重流垂向温度场影响的试验研究[J]. 水利水电技术, 2018, 49(10):100-109.
    [37]
    肖千璐, 李瑞杰, 王梅菊. 波浪作用下沙纹床面形态及底摩阻系数研究[J]. 水运工程, 2017(5):12-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return