Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Li, LIAN Zi, HUANG Xue-min. CATALYTIC PERFORMANCE OF TYPICAL VOCs OVER MnCeOx/ZEOLITE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 48-53. doi: 10.13205/j.hjgc.202001007
Citation: ZHANG Hanxu, LI Xinyu, CUI Baoshan, WANG Qing, YU Hailing, WU Xia, XU Jiamei. EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 222-231. doi: 10.13205/j.hjgc.202301027

EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA

doi: 10.13205/j.hjgc.202301027
  • Received Date: 2022-10-08
    Available Online: 2023-03-23
  • To explore the impact of the Yellow River Delta restoration project on the macrobenthos community and the key impact factors, in 2019, 2020 and 2021, six sampling batches of macrobenthos and soil/sediment samples were conducted in the restoration area and unrecovered area of the Yellow River Delta International Important Wetland Biodiversity Conservation Project. In the survey, 78 species of macrobenthos were found, belonging to 4 phyla, 8 classes and 61 families. The results showed that the dominance of Insecta was increasing with time, while the dominance of molluscs and annelids with strong pollution resistance was decreasing. In the comparison of the two growth seasons in May 2020 and June 2021, it was found that the density of Insecta species showed an upward trend in the south bank area against the background of the decline of the overall density of benthos. The change in dominant species and species density indicated that the ecological restoration project had improved the environmental conditions of the restoration area. At the initial stage of the completion of the ecological restoration project, the living environment and community structure of macrobenthos were seriously disturbed by the project construction, and it took time to restore biodiversity. The analysis of environmental factors showed that the macrobenthos community had a positive correlation with salinity and total carbon content of soil/sediment, indicating the impact of estuarine environmental factors on distribution of benthos. This study contrastively analyzed the characteristics and change process of benthos communities in the ecological restoration area and natural wetlands in the Yellow River Delta, provided important data and support for the implementation effect evaluation of the Yellow River Delta Estuary Wetland Restoration Project, and provided guidance and reference for the implementation and management of the subsequent wetland restoration project.
  • [1]
    GRAF G, Rosenberg R. Bioresuspension and biodeposition:a review[J]. 1997, 11(3/4):269-278.
    [2]
    GEERKEN E, NOOIJER L J D, DIJK I V, et al. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents[J]. Biogeosciences Discussions, 2018.
    [3]
    ZHANG J H, YANG G, SHI X, et al. Species composition and diversity of marine organisms from benthic trawling in Daya Bay of the northern South China Sea[J]. Biodiversity Science, 2017, 25(9):1019-1030.
    [4]
    徐彩瑶, 濮励杰, 朱明.沿海滩涂围垦对生态环境的影响研究进展[J].生态学报, 2018, 38(3):1148-1162.
    [5]
    MASERO J A, M PÉREZ-GONZÁLEZ, BASADRE M, et al. Food supply for waders (Aves:Charadrii) in an estuarine area in the Bay of Cádiz (SW Iberian Peninsula)[J]. Acta Oecologica, 1999, 20(4):429-434.
    [6]
    PIELOUEC. Ecological Diversity[M].NewYork:Wiley-Inters, 1975.
    [7]
    BOONPI, ALLEN, CARRG, et al. Coastal wetlands of Victoria, south-eastern Australia:providing the inventory and condition information needed for their effective management and conservation[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2015, 25(4):454-479.
    [8]
    王天慈, 王芳, 渠晓东.中国典型河口湿地底栖动物优势类群比较[J].中国环境监测, 2021, 37(3):134-150.
    [9]
    王盼盼, 李玲玲, 陈洪涛, 等.黄河口湿地沉积物间隙水中营养盐研究[J].海洋湖沼通报, 2014(4):97-103.
    [10]
    刘露雨, 屈凡柱, 栗云召, 等.黄河三角洲滨海湿地潮沟分布与植被覆盖度的关系[J].生态学杂志, 2020, 39(6):1830-1837.
    [11]
    陈利顶, 傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析:以山东省东营市为例[J].生态学报, 1996(4):337-344.
    [12]
    洪佳, 卢晓宁, 王玲玲.1973-2013年黄河三角洲湿地景观演变驱动力[J].生态学报, 2016, 36(4):924-935.
    [13]
    李俊翰, 高明秀.黄河三角洲滨海土壤盐渍化时空演化特征[J].土壤通报, 2018, 49(6):1458-1465.
    [14]
    武慧慧, 孙志高, 孙文广, 等.黄河口生态恢复工程对湿地土壤不同形态无机硫动态变化的影响[J].水土保持学报, 2020, 34(6):150-158

    , 165.
    [15]
    史会剑, 李玄, 王海艳, 等.黄河三角洲潮间带大型底栖无脊椎动物群落结构与分布特征[J].海洋科学, 2021, 45(2):11-21.
    [16]
    李宝泉, 姜少玉, 吕卷章, 等.黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化[J].生物多样性, 2020, 28(12):1511-1522.
    [17]
    芦康乐, 杨萌尧, 武海涛, 等.黄河三角洲芦苇湿地底栖无脊椎动物与环境因子的关系研究——以石油开采区与淡水补给区为例[J].生态学报, 2020, 40(5):1637-1649.
    [18]
    庞博, 崔保山, 蔡燕子, 等. 我国滨海湿地生态修复参照区选取方法研究[J]. 环境生态学, 2020, 2(1):1-9.
    [19]
    徐兆礼, 王云龙, 陈亚瞿, 等.长江口最大浑浊带区浮游动物的生态研究[J].中国水产科学, 1995(1):39-48.
    [20]
    吴召仕, 蔡永久, 陈宇炜, 等.太湖流域主要河流大型底栖动物群落结构及水质生物学评价[J].湖泊科学, 2011, 23(5):686-694.
    [21]
    蒋万祥, 蔡庆华, 唐涛, 等.香溪河水系大型底栖动物功能摄食类群生态学[J].生态学报, 2009, 29(10):5207-5218.
    [22]
    郝卫民, 王士达, 王德铭.洪湖底栖动物群落结构及其对水质的初步评价[J].水生生物学报, 1995(2):124-134.
    [23]
    韩志杰, 赵志红, 常欣悦, 等.昌黎生态监控区夏季大型底栖动物群落特征及其环境影响因子分析[J].海洋湖沼通报, 2019(3):108-118.
    [24]
    王航俊, 姚炜民, 林义, 等.乐清湾大型底栖动物群落及其与环境因子之间的关系[J].海洋学报, 2020, 42(2):75-86.
    [25]
    SCHEUHAMMER A M, MCNICOL D K, MALLORY M L, et al. Relationships between lake chemistry and calcium and trace metal concentrations of aquatic invertebrates eaten by breeding insectivorous waterfowl[J]. Environmental Pollution, 1997, 96(2):235-247.
    [26]
    刘勇, 线薇薇.温度对日本刺沙蚕氮生长和氮收支的影响[J].水产科学, 2010, 29(6):311-316.
    [27]
    池仕运, 王瑞, 魏秘, 等.基于2010-2019年监测数据的金沙江上中段大型底栖无脊椎动物的群落结构特征和多样性分析[J/OL].生态学报, 2022(21):1-16.
    [28]
    马宝珊, 徐滨, 魏开金, 等.安宁河中游底栖动物群落结构及其与环境因子的关系[J].水生生物学报, 2019, 43(3):643-653.
    [29]
    王川, 岳兴建, 谢嗣光, 等.越溪河春季底栖动物的群落结构及水质评价[J].内江师范学院学报, 2010, 25(12):59-64.
    [30]
    游清徽, 王硕, 孙晨松, 等.基于大型底栖无脊椎动物的鄱阳湖湿地水质评价[J].应用与环境生物学报, 2021, 27(6):1570-1576.
    [31]
    刘国锋, 张志勇, 刘海琴, 等.底泥疏浚对竺山湖底栖动物群落结构变化及水质影响[J].环境科学, 2010, 31(11):2645-2651.

    [32]
    陆文泽, 任仁, 饶骁, 等.太湖流域城市湖泊大型底栖动物群落结构及影响因素研究[J/OL].水生态学杂志:1-15[2022-07-07

    [33]
    张建华, 殷鹏, 张雷, 等.底泥疏浚对太湖内源及底栖动物恢复的影响[J/OL].环境科学:1-15[2022-10-03

    ].
    [34]
    严润玄, 冯明, 王晓波, 等.浙江北部海域大型底栖动物优势种的时空分布[J].海洋与湖沼, 2020, 51(5):1162-1174.
    [35]
    寇存辉. 大型底栖动物扰动对潮间带沉积物中营养盐的影响[D].天津:天津科技大学, 2017.
    [36]
    刘乐丹, 王先云, 陈丽平, 等.淀山湖底栖动物群落结构及其与沉积物碳氮磷的关系[J].长江流域资源与环境, 2018, 27(6):1269-1278.
    [37]
    王开荣.黄河调水调沙对河口及其三角洲的影响和评价[J].泥沙研究, 2005(6):31-35.
    [38]
    姚庆祯, 于志刚, 王婷, 等.调水调沙对黄河下游营养盐变化规律的影响[J].环境科学, 2009, 30(12):3534-3540.
    [39]
    余婕, 刘敏, 侯立军, 等.崇明东滩大型底栖动物食源的稳定同位素示踪[J].自然资源学报, 2008(2):319-326.
    [40]
    HONKOOP P J C, BAYNE B L, UNDERWOOD A J, et al. Appropriate experimental design for transplanting mussels (Mytilus sp.) in analyses of environmental stress:an example in Sydney Harbour (Australia)[J]. Journal of Experimental Marine Biology and Ecology, 2003.
  • Relative Articles

    [1]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [2]ZHANG Xinyue, KONG Yun, SHI Weihong, HUANG Yongzhou. GROWTH CHARACTERISTICS AND COMMUNITY FUNCTION OF PIPE WALL BIOFILMS UNDER CHLORINATION/CHLORAMINATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 47-54. doi: 10.13205/j.hjgc.202401007
    [3]YUE Xiupeng, SUN Qianzhao, LÜ Mengxue, LI Jiaqi, WANG Andong, ZHANG Shuyan, XIE Tian, WANG Qing. EVALUATION ON EFFECTS OF DIFFERENT RESTORATION MEASURES ON SUAEDA SALSA WETLAND IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 8-16. doi: 10.13205/j.hjgc.202408002
    [4]XIE Chengjie, XIE Tian, NING Zhonghua, CUI Baoshan. CHARACTERISTIC CHANGE OF MACROBENTHIC COMMUNITIES IN THE TIDAL FLAT WETLANDS OF THE YELLOW RIVER DELTA IN THE PAST 20 YEARS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 42-50. doi: 10.13205/j.hjgc.202409004
    [5]MA Xu, HAN Zhen, WANG Shiyan, LIU Xiaobo, ZHAO Shilin, LIU Chang, MENG Zhujian, ZHANG Huan, WANG Liang, ZHU Bei, TAN Yiqian, WANG Jie, LIU Wei, PENG Wenqi. RESPONSE CHARACTERISTICS OF SUBMERGED PLANT VALLISNERIA SPINULOSA YAN TO DIFFERENT FLOODING CONDITIONS IN POYANG LAKE AND IMPLICATIONS FOR ECOLOGICAL RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 204-212. doi: 10.13205/j.hjgc.202301025
    [6]CHEN Xuejuan, GAO Fang, WANG Qing, PANG Bo, XIE Yiliang, CUI Baoshan, YUE Xiupeng, SONG Jianbin. DISTRIBUTION CHARACTERISTICS AND POTENTIAL RISK OF HEAVY METALS IN WETLAND FRESHWATER RESTORATION AREA OF THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 232-239. doi: 10.13205/j.hjgc.202301028
    [7]LIU Yeling, ZHAO Shigao, DONG Weiping, WANG Qing, YANG Wei, CUI Baoshan. PLANKTON COMMUNITY CHARACTERISTICS AND INFLUENCING FACTORS OF RIVER-LAKE WETLANDS IN TONGLING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 10-17,131. doi: 10.13205/j.hjgc.202301002
    [8]ZHONG Yiwen, SU Wenxing, JIANG Shan, WANG Yinhong, LIU Wangrong, WU Genyi, ZENG Dong, CHEN Lei. MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 145-153. doi: 10.13205/j.hjgc.202308018
    [9]LI Shuhan, WANG Xiaoling, LIN Haiying, SUN Tao, YANG Wei. TEMPORAL VARIATION TRAITS AND ENVIRONMENTAL FACTORS OF COMMUNITY STRUCTURE OF EPIPHYTES ON CERATOPHYLLUM DEMERSUM IN THE BAIYANGDIAN LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 22-29. doi: 10.13205/j.hjgc.202305004
    [10]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [11]LIU Xirong, DONG Zhen, LI Fayu, CAI Lijie, SUN Lin, LI Pengpeng. ECOLOGICAL MONITORING AND EVALUATION OF THE YELLOW RIVER DELTA BASED ON HIGH-RESOLUTION REMOTE SENSING DATA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 9-16. doi: 10.13205/j.hjgc.202306002
    [12]YI Hongxue, LI Jie, WANG Yae, ZHAO Wei, XIE Huina, ZHANG Wenli, QUAN Hairong, MU Hao, HU Kaiyao. EFFECTS OF ACHROMOBACTER DENITRIFICANS STRAIN 2-5 WITH IRON OXIDATION AND AEROBIC DENITRIFICATION FUNCTION ON BIOLOGICAL NITROGEN REMOVAL PERFORMANCE AND COMMUNITY STRUCTURE IN A SEQUENCING BATCH REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 211-216. doi: 10.13205/j.hjgc.202212028
    [13]LI Wenbing, BI Jiangtao, LIU Peng, HUI Zhibing, SUN Quan. CORRELATION BETWEEN THE SUCCESSION OF MICROBIAL COMMUNITY STRUCTURE AND ENVIRONMENTAL FACTORS AND MATURITY OF CATTLE MANURE AEROBIC COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 69-77. doi: 10.13205/j.hjgc.202201011
    [14]XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
    [15]YU Ying-nan, SUN Dan-yan, ZHENG Tao, CHENG Wei, LU Zhi-bo, LU Li-jun, HUANG Ju-wen, XU Jing-cheng. ECOLOGICAL RESTORATION EFFECT AND SAFETY EVALUATION OF RECLAIMED WATER FROM SEWAGE TREATMENT PLANT FOR URBAN RIVERS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 1-5,26. doi: 10.13205/j.hjgc.202106001
    [16]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [17]ZHANG Ling-ling, TERIGELE, LI Jing-nan, ZHAO Yan-hui, YAN Qing-qing, ER Wen-fei. APPLICATION OF ULTRAFINE BUBBLE OXYGEN ENRICHMENT AND BIOLOGICAL ACTIVATION TECHNOLOGY IN BLACK AND ODOROUS WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 66-71,156. doi: 10.13205/j.hjgc.202011011
    [18]HU Si-kui, ZHANG Shi-jun, REN Chen-yuan, WANG Qing-guo, LIANG Ying, LIU Chao-rong. SIMULATION AND CONTROL OF URBAN SHALLOW LAKES WATER ECOSYSTEM WITH AQUATOX[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 82-88. doi: 10.13205/j.hjgc.202009014
    [19]CHEN Jin-huan, TANG Jia-wen, WANG Kai-nan, ZHANG Qiu-zhuo. APPLICATION OF AQUATIC PLANTS COMMUNITY BUILDING TECHNOLOGY IN EUTROPHIC WATER RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 105-112,135. doi: 10.13205/j.hjgc.202008018
    [20]XU Xin-yu, LI Wei-min, YE Jiang-yu. TREATMENT OF LANDFILL LEACHATE BY PHOTOSYNTHETIC BACTERIA IN SBR SYSTEM AND ANALYSIS ON BIOLOGICAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 99-104. doi: 10.13205/j.hjgc.202001015
  • Cited by

    Periodical cited type(7)

    1. 陈东,陈军辉,姜涛,梅林德. 催化燃烧工艺在制药行业VOCs废气治理中的应用. 浙江化工. 2024(02): 48-54 .
    2. 邢欣,李娜,程杰. 不同Cu负载量Cu-ZSM-5催化剂上正丁胺的选择催化氧化性能. 环境工程. 2022(03): 51-58 . 本站查看
    3. 胡志斐,王振峰,汪思瀛,武文斐,侯丽敏,张凯,白心蕊. 矿物材料在催化脱硝方面的应用进展. 矿产保护与利用. 2021(01): 161-165 .
    4. 樊灏,沈振兴,逯佳琪,常甜,黄宇. 常温除甲醛催化剂Mn_1Ce_x/HZSM-5的活性位点与性能分析. 环境工程. 2021(06): 99-105 . 本站查看
    5. 隗晶慧,冯勇超,于庆君,易红宏,唐晓龙,张媛媛,孟宪政,袁雨婷. 餐饮油烟中典型VOCs催化氧化研究进展. 化工进展. 2021(10): 5730-5746 .
    6. 高齐,马建,胡吉国,盛守祥,陈琛,冯俊亭. TFT-LCD制造行业VOCs排放特征及减排效果. 液晶与显示. 2020(10): 1087-1094 .
    7. 唐振艳,刘锋,左川,侯文明. 挥发性有机物催化燃烧用贵金属催化剂的研究进展. 贵金属. 2020(03): 85-93 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.8 %FULLTEXT: 15.8 %META: 80.4 %META: 80.4 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.6 %其他: 25.6 %其他: 0.8 %其他: 0.8 %Rochester: 0.3 %Rochester: 0.3 %上海: 2.8 %上海: 2.8 %东京: 0.8 %东京: 0.8 %东莞: 0.5 %东莞: 0.5 %东营: 0.3 %东营: 0.3 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 4.7 %北京: 4.7 %北海: 0.3 %北海: 0.3 %南京: 1.3 %南京: 1.3 %台州: 0.3 %台州: 0.3 %合肥: 0.5 %合肥: 0.5 %大同: 0.5 %大同: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.3 %天津: 1.3 %太原: 0.5 %太原: 0.5 %宣城: 0.8 %宣城: 0.8 %常州: 0.3 %常州: 0.3 %常德: 1.0 %常德: 1.0 %广州: 0.3 %广州: 0.3 %张家口: 0.5 %张家口: 0.5 %成都: 1.3 %成都: 1.3 %扬州: 0.3 %扬州: 0.3 %无锡: 0.8 %无锡: 0.8 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %杭州: 2.8 %杭州: 2.8 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.3 %泰安: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济南: 1.6 %济南: 1.6 %济宁: 0.8 %济宁: 0.8 %济源: 0.3 %济源: 0.3 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %湛江: 0.3 %湛江: 0.3 %漯河: 1.0 %漯河: 1.0 %潍坊: 0.5 %潍坊: 0.5 %烟台: 3.4 %烟台: 3.4 %珠海: 0.3 %珠海: 0.3 %福州: 0.3 %福州: 0.3 %芒廷维尤: 25.1 %芒廷维尤: 25.1 %芝加哥: 1.3 %芝加哥: 1.3 %衢州: 1.3 %衢州: 1.3 %西宁: 3.9 %西宁: 3.9 %西雅图: 0.3 %西雅图: 0.3 %贵阳: 2.3 %贵阳: 2.3 %运城: 1.3 %运城: 1.3 %遵义: 0.3 %遵义: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 0.5 %重庆: 0.5 %金华: 0.3 %金华: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阿拉尔: 0.5 %阿拉尔: 0.5 %青岛: 0.8 %青岛: 0.8 %其他其他Rochester上海东京东莞东营临汾保定北京北海南京台州合肥大同大连天津太原宣城常州常德广州张家口成都扬州无锡昆明晋城杭州武汉沈阳泰安洛阳济南济宁济源温州湖州湛江漯河潍坊烟台珠海福州芒廷维尤芝加哥衢州西宁西雅图贵阳运城遵义郑州重庆金华长春长沙长治阿拉尔青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (311) PDF downloads(16) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return