Core Chinese Journal
Source Journal of CSCD(Core Version)
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Hanxu, LI Xinyu, CUI Baoshan, WANG Qing, YU Hailing, WU Xia, XU Jiamei. EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 222-231. doi: 10.13205/j.hjgc.202301027
Citation: ZHANG Hanxu, LI Xinyu, CUI Baoshan, WANG Qing, YU Hailing, WU Xia, XU Jiamei. EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 222-231. doi: 10.13205/j.hjgc.202301027

EFFECT OF WETLAND ECOLOGICAL RESTORATION PROJECT ON MACROBENTHOS COMMUNITY IN THE YELLOW RIVER DELTA

doi: 10.13205/j.hjgc.202301027
  • Received Date: 2022-10-08
    Available Online: 2023-03-23
  • To explore the impact of the Yellow River Delta restoration project on the macrobenthos community and the key impact factors, in 2019, 2020 and 2021, six sampling batches of macrobenthos and soil/sediment samples were conducted in the restoration area and unrecovered area of the Yellow River Delta International Important Wetland Biodiversity Conservation Project. In the survey, 78 species of macrobenthos were found, belonging to 4 phyla, 8 classes and 61 families. The results showed that the dominance of Insecta was increasing with time, while the dominance of molluscs and annelids with strong pollution resistance was decreasing. In the comparison of the two growth seasons in May 2020 and June 2021, it was found that the density of Insecta species showed an upward trend in the south bank area against the background of the decline of the overall density of benthos. The change in dominant species and species density indicated that the ecological restoration project had improved the environmental conditions of the restoration area. At the initial stage of the completion of the ecological restoration project, the living environment and community structure of macrobenthos were seriously disturbed by the project construction, and it took time to restore biodiversity. The analysis of environmental factors showed that the macrobenthos community had a positive correlation with salinity and total carbon content of soil/sediment, indicating the impact of estuarine environmental factors on distribution of benthos. This study contrastively analyzed the characteristics and change process of benthos communities in the ecological restoration area and natural wetlands in the Yellow River Delta, provided important data and support for the implementation effect evaluation of the Yellow River Delta Estuary Wetland Restoration Project, and provided guidance and reference for the implementation and management of the subsequent wetland restoration project.
  • loading
  • [1]
    GRAF G, Rosenberg R. Bioresuspension and biodeposition:a review[J]. 1997, 11(3/4):269-278.
    [2]
    GEERKEN E, NOOIJER L J D, DIJK I V, et al. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents[J]. Biogeosciences Discussions, 2018.
    [3]
    ZHANG J H, YANG G, SHI X, et al. Species composition and diversity of marine organisms from benthic trawling in Daya Bay of the northern South China Sea[J]. Biodiversity Science, 2017, 25(9):1019-1030.
    [4]
    徐彩瑶, 濮励杰, 朱明.沿海滩涂围垦对生态环境的影响研究进展[J].生态学报, 2018, 38(3):1148-1162.
    [5]
    MASERO J A, M PÉREZ-GONZÁLEZ, BASADRE M, et al. Food supply for waders (Aves:Charadrii) in an estuarine area in the Bay of Cádiz (SW Iberian Peninsula)[J]. Acta Oecologica, 1999, 20(4):429-434.
    [6]
    PIELOUEC. Ecological Diversity[M].NewYork:Wiley-Inters, 1975.
    [7]
    BOONPI, ALLEN, CARRG, et al. Coastal wetlands of Victoria, south-eastern Australia:providing the inventory and condition information needed for their effective management and conservation[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2015, 25(4):454-479.
    [8]
    王天慈, 王芳, 渠晓东.中国典型河口湿地底栖动物优势类群比较[J].中国环境监测, 2021, 37(3):134-150.
    [9]
    王盼盼, 李玲玲, 陈洪涛, 等.黄河口湿地沉积物间隙水中营养盐研究[J].海洋湖沼通报, 2014(4):97-103.
    [10]
    刘露雨, 屈凡柱, 栗云召, 等.黄河三角洲滨海湿地潮沟分布与植被覆盖度的关系[J].生态学杂志, 2020, 39(6):1830-1837.
    [11]
    陈利顶, 傅伯杰.黄河三角洲地区人类活动对景观结构的影响分析:以山东省东营市为例[J].生态学报, 1996(4):337-344.
    [12]
    洪佳, 卢晓宁, 王玲玲.1973-2013年黄河三角洲湿地景观演变驱动力[J].生态学报, 2016, 36(4):924-935.
    [13]
    李俊翰, 高明秀.黄河三角洲滨海土壤盐渍化时空演化特征[J].土壤通报, 2018, 49(6):1458-1465.
    [14]
    武慧慧, 孙志高, 孙文广, 等.黄河口生态恢复工程对湿地土壤不同形态无机硫动态变化的影响[J].水土保持学报, 2020, 34(6):150-158

    , 165.
    [15]
    史会剑, 李玄, 王海艳, 等.黄河三角洲潮间带大型底栖无脊椎动物群落结构与分布特征[J].海洋科学, 2021, 45(2):11-21.
    [16]
    李宝泉, 姜少玉, 吕卷章, 等.黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化[J].生物多样性, 2020, 28(12):1511-1522.
    [17]
    芦康乐, 杨萌尧, 武海涛, 等.黄河三角洲芦苇湿地底栖无脊椎动物与环境因子的关系研究——以石油开采区与淡水补给区为例[J].生态学报, 2020, 40(5):1637-1649.
    [18]
    庞博, 崔保山, 蔡燕子, 等. 我国滨海湿地生态修复参照区选取方法研究[J]. 环境生态学, 2020, 2(1):1-9.
    [19]
    徐兆礼, 王云龙, 陈亚瞿, 等.长江口最大浑浊带区浮游动物的生态研究[J].中国水产科学, 1995(1):39-48.
    [20]
    吴召仕, 蔡永久, 陈宇炜, 等.太湖流域主要河流大型底栖动物群落结构及水质生物学评价[J].湖泊科学, 2011, 23(5):686-694.
    [21]
    蒋万祥, 蔡庆华, 唐涛, 等.香溪河水系大型底栖动物功能摄食类群生态学[J].生态学报, 2009, 29(10):5207-5218.
    [22]
    郝卫民, 王士达, 王德铭.洪湖底栖动物群落结构及其对水质的初步评价[J].水生生物学报, 1995(2):124-134.
    [23]
    韩志杰, 赵志红, 常欣悦, 等.昌黎生态监控区夏季大型底栖动物群落特征及其环境影响因子分析[J].海洋湖沼通报, 2019(3):108-118.
    [24]
    王航俊, 姚炜民, 林义, 等.乐清湾大型底栖动物群落及其与环境因子之间的关系[J].海洋学报, 2020, 42(2):75-86.
    [25]
    SCHEUHAMMER A M, MCNICOL D K, MALLORY M L, et al. Relationships between lake chemistry and calcium and trace metal concentrations of aquatic invertebrates eaten by breeding insectivorous waterfowl[J]. Environmental Pollution, 1997, 96(2):235-247.
    [26]
    刘勇, 线薇薇.温度对日本刺沙蚕氮生长和氮收支的影响[J].水产科学, 2010, 29(6):311-316.
    [27]
    池仕运, 王瑞, 魏秘, 等.基于2010-2019年监测数据的金沙江上中段大型底栖无脊椎动物的群落结构特征和多样性分析[J/OL].生态学报, 2022(21):1-16.
    [28]
    马宝珊, 徐滨, 魏开金, 等.安宁河中游底栖动物群落结构及其与环境因子的关系[J].水生生物学报, 2019, 43(3):643-653.
    [29]
    王川, 岳兴建, 谢嗣光, 等.越溪河春季底栖动物的群落结构及水质评价[J].内江师范学院学报, 2010, 25(12):59-64.
    [30]
    游清徽, 王硕, 孙晨松, 等.基于大型底栖无脊椎动物的鄱阳湖湿地水质评价[J].应用与环境生物学报, 2021, 27(6):1570-1576.
    [31]
    刘国锋, 张志勇, 刘海琴, 等.底泥疏浚对竺山湖底栖动物群落结构变化及水质影响[J].环境科学, 2010, 31(11):2645-2651.

    [32]
    陆文泽, 任仁, 饶骁, 等.太湖流域城市湖泊大型底栖动物群落结构及影响因素研究[J/OL].水生态学杂志:1-15[2022-07-07

    [33]
    张建华, 殷鹏, 张雷, 等.底泥疏浚对太湖内源及底栖动物恢复的影响[J/OL].环境科学:1-15[2022-10-03

    ].
    [34]
    严润玄, 冯明, 王晓波, 等.浙江北部海域大型底栖动物优势种的时空分布[J].海洋与湖沼, 2020, 51(5):1162-1174.
    [35]
    寇存辉. 大型底栖动物扰动对潮间带沉积物中营养盐的影响[D].天津:天津科技大学, 2017.
    [36]
    刘乐丹, 王先云, 陈丽平, 等.淀山湖底栖动物群落结构及其与沉积物碳氮磷的关系[J].长江流域资源与环境, 2018, 27(6):1269-1278.
    [37]
    王开荣.黄河调水调沙对河口及其三角洲的影响和评价[J].泥沙研究, 2005(6):31-35.
    [38]
    姚庆祯, 于志刚, 王婷, 等.调水调沙对黄河下游营养盐变化规律的影响[J].环境科学, 2009, 30(12):3534-3540.
    [39]
    余婕, 刘敏, 侯立军, 等.崇明东滩大型底栖动物食源的稳定同位素示踪[J].自然资源学报, 2008(2):319-326.
    [40]
    HONKOOP P J C, BAYNE B L, UNDERWOOD A J, et al. Appropriate experimental design for transplanting mussels (Mytilus sp.) in analyses of environmental stress:an example in Sydney Harbour (Australia)[J]. Journal of Experimental Marine Biology and Ecology, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return