Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001
Citation: FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001

EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING

doi: 10.13205/j.hjgc.202302001
  • Received Date: 2021-09-09
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • In this research, the XDLVO (extended Derjaguin-Landau-Verwey-Overbeek) theory was employed to analyze the fouling status of nanofiltration (NF) membrane caused by hydrophilic and hydrophobic organic matters. Quantitative analysis was conducted on six types of hydrophilic and hydrophobic organic matters with different molecular weight ranges (less than 100 kDa, less than 50 kDa, and less than 3 kDa, respectively) and the interfacial free energy of NF membrane was analyzed, in a bid to figure out the performance of the membrane fouling. Furthermore, the corresponding relationship between flux decay and interfacial free energy was verified by the NF experiment. The results showed that the degree of membrane fouling caused by the above-mentioned six hydrophilic or hydrophobic organic matters with different molecular weights in this study was consistent with the XDLVO theoretical analysis, in which the hydrophobic ones with a molecular weight less than 100 kDa showed the slightest repulsive interaction against the membrane and led to the most serious fouling. Besides, the degree of NF membrane fouling by different organic matters was ordered in a descending way as follows:(hydrophobic, molecular weight less than 100 kDa)>(hydrophobic, molecular weight less than 50 kDa)>(hydrophobic, molecular weight less than 3 kDa)>(hydrophilic, molecular weight less than 3 kDa)>(hydrophilic, molecular weight less than 50 kDa)>(hydrophilic, molecular weight less than 100 kDa). The main contaminants on the membrane surface were polysaccharides, proteins and phencyclic olefins, the organic matter clogged the membrane pores in the early stages of filtration, resulting in a rapid decrease in the specific flux of the membrane, while the formation of a cake layer in the later stages of filtration slowed the decrease in the specific flux of the membrane.
  • [1]
    李世勇, 武福平, 张子贤, 等. 不同国产纳滤膜对饮用水中氟离子的去除影响研究[J]. 水处理技术, 2021, 47(4):62-65.
    [2]
    ELAKKIYA S, ARTHANAREESWARAN G, ISMAIL A F, et al. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application[J]. Environmental Research, 2021, 197:111177.
    [3]
    ZAMANI F, ULLAH A, AKHONDI E, et al. Impact of the surface energy of particulate foulants on membrane fouling[J]. Journal of Membrane Science, 2016, 510:101-111.
    [4]
    YUAN X T, WU L, GENG H Z, et al. Polyaniline/polysulfone ultrafiltration membranes with improved permeability and anti-fouling behavior[J]. Journal of Water Process Engineering, 2021, 40:101903.
    [5]
    张媚佳. 膜生物反应器中膜污染的形成机理及其影响因素研究[D]. 金华:浙江师范大学, 2015.
    [6]
    LU D W, JIA B H, XU S, et al. Role of pre-coagulation in ultralow pressure membrane system for Microcystis aeruginosa-laden water treatment:membrane fouling potential and mechanism[J]. Science of the Total Environment, 2020, 710:136340.
    [7]
    赵飞, 许柯, 任洪强, 等. XDLVO理论解析有机物和钙离子对纳滤膜生物污染的影响[J]. 中国环境科学, 2015, 35(12):3602-3611.
    [8]
    SHEN L G, CUI X, YU G Y, et al. Thermodynamic assessment of adsorptive fouling with the membranes modified via layer-by-layer self-assembly technique[J]. Journal of Colloid and Interface Science, 2017, 494:194-203.
    [9]
    SHAN L L, FAN H W, GUO H X, et al. Natural organic matter fouling behaviors on superwetting nanofiltration membranes[J]. Water Research, 2016, 93:121-132.
    [10]
    ZHAO L H, WANG F Y, WENG X X, et al. Novel indicators for thermodynamic prediction of interfacial interactions related with adhesive fouling in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 487:320-329.
    [11]
    ZHANG M J, LIAO B Q, ZHOU X L, et al. Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor[J]. Bioresource Technology, 2015, 175:59-67.
    [12]
    ZHAO F C, LI Z X, ZHOU X L, et al. The comparison between vibration and aeration on the membrane performance in algae harvesting[J]. Journal of Membrane Science, 2019, 592:117390.
    [13]
    ZHAO Y Y, QIN Z P, ZHAO Y, et al. Evaluating the anti-fouling property of the hydrophilically modified porous PTFE membrane[J]. Desalination and Water Treatment, 2019, 159:224-231.
    [14]
    BAI Z Y, ZHANG R J, WANG S X, et al. Membrane fouling behaviors of ceramic hollow fiber microfiltration (MF) membranes by typical organic matters[J]. Separation and Purification Technology, 2021, 274:118951.
    [15]
    ZHAO Y M, LU D W, XU C B, et al. Synergistic oxidation-filtration process analysis of catalytic CuFe2O4-Tailored ceramic membrane filtration via peroxymonosulfate activation for humic acid treatment[J]. Water Research, 2020, 171:115387.
    [16]
    THURMAN E M, MALCOLM R L. Preparative isolation of aquatic humic substances[J]. Environmental Science & Technology, 1981, 15(4):463-466.
    [17]
    BRANT J A, CHILDRESS A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203(1):257-273.
    [18]
    van OSS C J, GOOD R J, BUSSCHER R J. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids[J]. Journal of Dispersion Science & Technology, 1990, 11(1):75-81.
    [19]
    丰桂珍, 董秉直. DOM纳滤膜污染及对膜截留卡马西平性能的影响[J]. 环境科学, 2013, 34(11):4295-4303.
    [20]
    KUHNL W, PIRY A, KAUFMANN V, et al. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values:a surface energy approach[J]. Journal of Membrane Science, 2010, 352(1/2):107-115.
    [21]
    寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论解析膜法水处理过程中膜污染问题的研究[J]. 膜科学与技术, 2017, 37(1):8-15.
    [22]
    寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论分析物理化学相互作用对纳滤膜有机污染影响[J]. 水处理技术, 2017, 43(8):32-39.
    [23]
    van OSS C J, GOOD R J. Surface tension and the solubility of polymers and biopolymers:the role of polar and apolar interfacial free energies[J]. Journal of Macromolecular Science, Part A, 1989, 26(8):1183-1203.
    [24]
    van OSS C J. Interfacial forces in aqueous media[M]. Boca Raton:CRC Press, 2006:1-300.
    [25]
    吴欢欢, 沈飞, 万印华, 等. XDLVO理论解析膜蒸馏回收离子液体过程中的膜污染研究[J]. 膜科学与技术, 2019, 39(5):9-17.
    [26]
    ZHANG B, TANG H L, HUANG D M, et al. Effect of pH on anionic polyacrylamide adhesion:New insights into membrane fouling based on XDLVO analysis[J]. Journal of Molecular Liquids, 2020, 320:114463.
    [27]
    FENG L, LI X F, SONG P, et al. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes[J]. Applied Biochemistry and Biotechnology, 2011, 165(5/6):1235-1244.
    [28]
    刘晓倩. XDLVO理论定量解析混合有机物微滤膜污染机理[D]. 济南:山东大学, 2017.
    [29]
    YANG H K, XUE W, LIU M J, et al. Carbon doped Fe3O4 peroxidase-like nanozyme for mitigating the membrane fouling by NOM at neutral pH[J]. Water Research, 2020, 174:115637.
    [30]
    邢本刚, 梁宏. FT-IR在蛋白质二级结构研究中的应用进展[J]. 广西师范大学学报(自然科学版), 1997,15(3):46-50.
  • Relative Articles

    [1]FEI Tingting, DING Xiaoting, QUE Xiang, LIN Jin, LIN Jian, WANG Ziwei, LIU Jinfu. SPATIOTEMPORAL HETEROGENEITY ANALYSIS OF ENERGY CARBON EMISSION EFFICIENCY IN CHINA BASED ON SBM-DEA AND STWR MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 188-200. doi: 10.13205/j.hjgc.202410022
    [2]ZHENG Haitao, LIU Jianguo, LUO Tao, CHENG Xueling, TAO Bangyi, LIU Cheng, HUANG Kan, SONG Xiaoquan, SHAO Shiyong, CAO Nianwen, XIANG Yan, ZHANG Tianshu, CHEN Bing, LIU Nana, JIN Xiang, LONG Wenrui, LIU Jiaxin, LI Qilong, MA Yubin, WU Lin, JIN Jiangbo, XU Manman, XU Ziqiang, WU Xiaoqing, BI Cuicui, LIU Qing, LI Junmin, HAN Chenghui, HAN Yong, QIN Fuqiang, ZHANG Chengxin, TAN Wei, WANG Bingbing, WANG Mian, CHENG Yin, LI Hao, WANG Guang, YUN Long. RESEARCH PROGRESS ON INTEGRATED THREE-DIMENSIONAL DETECTION TECHNOLOGY FOR ATMOSPHERIC POLLUTION IN COASTAL OCEAN BOUNDARY LAYER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 1-16. doi: 10.13205/j.hjgc.202403001
    [3]CHEN Fang, HU Jun, XU Lizhong, HUANG Weilong, GUO Eryang, RAO Qinghua. SPATIOTEMPORAL AGGREGATION CHANGE PATTERN OF PM2.5 AND O3 CONCENTRATION IN FUJIAN PROVINCE,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 171-182. doi: 10.13205/j.hjgc.202407019
    [4]GUO Yajun, WANG Hualan, LI Mingxuan, LI Ruohan. ANALYSIS OF AIR POLLUTION CHARACTERISTICS IN EXPRESSWAY AREAS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 166-171. doi: 10.13205/j.hjgc.202312020
    [5]ZHANG Qing, ZHAO Liya, GUO Zhiwei, QI Kai. SPATIAL AND TEMPORAL DISTRIBUTION CHARACTERISTICS OF ATMOSPHERIC POLLUTANTS IN WUHAN FROM 2017 TO 2020[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 82-90. doi: 10.13205/j.hjgc.202302012
    [6]ZUO Penglai, GAO Qiang, ZHANG Yun, HAN Jiahui, TONG Yali, LIU Ping, GAO Jiajia. RESEARCH ON VERIFICATION FOR AIR POLLUTANTS ULTRA-LOW EMISSION TECHNOLOGIES OF COAL-FIRED POWER PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 224-230. doi: 10.13205/j.hjgc.202212030
    [7]XIAO Kai, REN Xue-chang, CHEN Ren-hua. ANALYSIS OF TRANSMISSION CHARACTERISTICS AND POTENTIAL SOURCES OF AIR POLLUTANTS IN JIAYUGUAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 92-101,109. doi: 10.13205/j.hjgc.202109014
    [8]YU Zhen-dong, XU Wei. CURRENT SITUATION AND COUNTERMEASURES OF AIR POLLUTION EMISSION CONTROL OF COKING INDUSTRY IN THE FENWEI PLAIN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 111-116,186. doi: 10.13205/j.hjgc.202101017
    [9]ZHANG Ya-ru, CHEN Yong-jin, GUO Qing-chun, SUN Hao. ANALYSIS ON TEMPO-SPATIAL VARIATION AND PREDICTION OF AIR POLLUTANTS IN JINAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 114-121. doi: 10.13205/j.hjgc.202002016
    [10]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [17]Ding Wenshan Cai Liangcai Shao Bin Ding Fei, . RESEARCH ON AIRPORT AIR POLLUTION STATUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 69-72. doi: 10.13205/j.hjgc.201503014
    [18]Shi Lingling, Li Xiaomin, Liu Jing, Xu Yaxuan, Li Xing. AIR POLLUTION SITUATION OF HENAN PROVINCE AND ITS CONTROLLING MEASURES[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 104-108. doi: 10.13205/j.hjgc.201505022
  • Cited by

    Periodical cited type(1)

    1. 孟德友,蔡河章,王宏. 泉州市2017-2021年大气污染特征及新冠疫情的影响. 环境科学与技术. 2023(08): 66-76 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.1 %FULLTEXT: 9.1 %META: 88.3 %META: 88.3 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 22.3 %其他: 22.3 %上海: 0.9 %上海: 0.9 %东莞: 0.6 %东莞: 0.6 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 0.9 %北京: 0.9 %十堰: 0.6 %十堰: 0.6 %南京: 0.3 %南京: 0.3 %合肥: 0.9 %合肥: 0.9 %呼和浩特: 0.3 %呼和浩特: 0.3 %大同: 0.3 %大同: 0.3 %天津: 0.6 %天津: 0.6 %常州: 0.9 %常州: 0.9 %常德: 0.9 %常德: 0.9 %平顶山: 0.3 %平顶山: 0.3 %广州: 0.6 %广州: 0.6 %张家口: 0.9 %张家口: 0.9 %成都: 1.5 %成都: 1.5 %扬州: 0.9 %扬州: 0.9 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 2.8 %杭州: 2.8 %湖州: 1.9 %湖州: 1.9 %漯河: 3.4 %漯河: 3.4 %芒廷维尤: 25.7 %芒廷维尤: 25.7 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.6 %苏州: 0.6 %蚌埠: 1.5 %蚌埠: 1.5 %衡阳: 0.9 %衡阳: 0.9 %衢州: 1.5 %衢州: 1.5 %西宁: 13.0 %西宁: 13.0 %西安: 0.6 %西安: 0.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 1.5 %运城: 1.5 %连云港: 0.3 %连云港: 0.3 %遵义: 0.3 %遵义: 0.3 %邢台: 0.3 %邢台: 0.3 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.4 %郑州: 3.4 %重庆: 0.3 %重庆: 0.3 %长沙: 0.9 %长沙: 0.9 %阜阳: 0.3 %阜阳: 0.3 %青岛: 0.6 %青岛: 0.6 %其他上海东莞临汾保定北京十堰南京合肥呼和浩特大同天津常州常德平顶山广州张家口成都扬州昆明晋城朝阳杭州湖州漯河芒廷维尤芝加哥苏州蚌埠衡阳衢州西宁西安贵阳运城连云港遵义邢台邯郸郑州重庆长沙阜阳青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(13) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return