Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
Citation: PING Song, YANG Rongrong, WU Lei, ZHOU Jun, LIU Changbo, SONG Yonghui, YUE Changsheng, TIAN Wei. ADSORPTION TREATMENT OF SIMULATIVE WASTEWATER CONTAINING CHROMIUM BY MODIFIED POROUS BLUECOKE POWDER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 7-15. doi: 10.13205/j.hjgc.202302002

ADSORPTION TREATMENT OF SIMULATIVE WASTEWATER CONTAINING CHROMIUM BY MODIFIED POROUS BLUECOKE POWDER

doi: 10.13205/j.hjgc.202302002
  • Received Date: 2011-12-21
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Using low-value blue coke as the raw material, modified porous bluecoke (MA-BC) was prepared by acid washing and microwave activation, and an experimental study on its adsorption treatment of simulated Cr(Ⅵ)-containing wastewater was carried out. The surface morphology and structure and functional groups of the bluecoke powder before and after the modification were compared and analyzed by BET, SEM, N2 adsorption-desorption test, and FT-IR. In the treatment of the simulated Cr(Ⅵ)-containing wastewater, the dosage of MA-BC, simulated wastewater pH, initial concentration of Cr(Ⅵ), and adsorption time were investigated respectively, and the thermodynamics and kinetics for the adsorption process of Cr(Ⅵ) were analyzed. The results showed that the specific surface area of activated bluecoke powder by acid washing and microwave heating increased to 160.69 m2/g, and the content of functional groups, -OH, C=C and -CH3 on the surface of MA-BC significantly increased. Under the optimal process condition that the initial concentration of Cr(Ⅵ) in the simulated wastewater was 100 mg/L, pH was 2, the MA-BC dosage was 2 g, the adsorption time was 210 min, and then the removal rate of Cr(Ⅵ) could reach 89.21%. The main adsorption process belonged to the chemical adsorption, which obeyed the pseudo-second-order kinetic equation and conformed to the Langmuir adsorption isotherm model. The theoretical adsorption capacity was 6.255 mg/g, which was consistent with the equilibrium adsorption capacity of the experiment. After 5 cycles of regeneration and adsorption, the removal rate of Cr(Ⅵ) in simulated wastewater absorbed by MA-BC remained 80% above.
  • [1]
    DOKE K M, KHAN E M. Equilibrium, kinetic and diffusion mechanism of Cr(Ⅵ) adsorption onto activated carbon derived from wood apple shell[J]. Arabian Journal of Chemistry, 2017, 10(1):252-260.
    [2]
    PRASAD S, YADAV K K, KUMAR S, et al. Chromium contamination and effect on environmental health and its remediation:a sustainable approaches[J]. Journal of Environmental Management, 2021, 285:112174.
    [3]
    VINUTH M, NAIK M M, KARTHIK K, et al. Detailed study on reduction of hazardous Cr(Ⅵ) at acidic pH using modified montmorillonite Fe(Ⅱ)-Mt under ambient conditions[J]. Research on Chemical Intermediates, 2019, 45(4):2357-2368.
    [4]
    LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257:120562.
    [5]
    王海, 阳柠灿, 邱木清. 花生壳生物炭-黏土吸附水中的Cr(Ⅵ)[J]. 无机材料学报, 2020, 35(3):301-308.
    [6]
    杨茸茸, 周军, 吴雷, 等. 可渗透反应墙技术中反应介质的研究进展[J]. 中国环境科学, 2021, 41(10):4579-4587.
    [7]
    LI P G, FU T, GAO X Y, et al. Adsorption and reduction transformation behaviors of Cr(Ⅵ) on mesoporous polydopamine/titanium dioxide composite nanospheres[J]. Journal of Chemical & Engineering Data, 2019, 64(6):2686-2696.
    [8]
    MOHAN D, PITTMAN CHARLES U J. Activated carbons and low-cost adsorbents for remediation of tri-and hexavalent chromium from water[J]. Journal of Hazardous Materials, 2006, 137(2):762-811.
    [9]
    LIU S, CAO L, TIAN X C, et al. Enhanced removal of Cr(Ⅵ) using a modified environment-friendly adsorbent[J]. Water Science & Technology, 2021, 83(3):678-688.
    [10]
    刘剑, 黄莉, 彭钢, 等. 颗粒活性炭载纳米零价铁去除水中的Cr(Ⅵ)[J]. 过程工程学报, 2019, 19(4):714-720.
    [11]
    LI L Y, CAO G, ZHU R S. Adsorption of Cr(Ⅵ) from aqueous solution by a litchi shell-based adsorbent[J]. Environmental Research, 2020, 196:110356.
    [12]
    杜珮雯, 党宏钰, 张永祥. 改性沸石和铁粉的复合材料处理水中六价铬的研究[J]. 中国环境科学, 2015, 35(5):1384-1390.
    [13]
    周佳玮, 罗太安, 朱业安, 等. 载铁改性膨润土处理含Cr(Ⅵ)废水试验研究[J]. 湿法冶金, 2016, 35(4):353-356.
    [14]
    CHERDCHOOA W, NITHETTHAM S, CHAROENPANICH J. Removal of Cr(Ⅵ) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea[J]. Chemosphere, 2019, 221:758-767.
    [15]
    MA H F, YANG J J, GAO X, et al. Removal of chromium (Ⅵ) from water by porous carbon derived from corn straw:influencing factors, regeneration and mechanism[J]. Journal of Hazardous Materials, 2019, 369:550-560.
    [16]
    WU L, ZHOU J, YANG R R, et al. Enhanced catalytic microwave pyrolysis of low-rank coal using Fe2O3@bluecoke absorber prepared by a simple mechanical ball milling-ScienceDirect[J]. Journal of the Energy Institute, 2021, 95:193-205.
    [17]
    WU L, ZHOU J, YANG R R, et al. Novel approach for enhanced catalytic microwave pyrolysis of low-rank coal[J]. Energy & Fuels, 2020, 34(8):9540-9551.
    [18]
    刘长波, 兰新哲, 田宇红, 等. 炭化温度对兰炭基成型活性炭性能的影响[J]. 煤炭转化, 2012, 35(1):69-72.
    [19]
    段茜, 潘建, 朱德庆, 等. 半焦制备活性炭的新工艺[J]. 钢铁研究学报, 2020, 32(7):661-667.
    [20]
    辛莹娟, 蒋绪, 张昭, 等. 有机/无机酸改性兰炭基活性炭及其对焦化废水的吸附研究[J]. 洁净煤技术, 2020, 26(4):196-202.
    [21]
    马淞江, 罗道成. Ce(SO4)2改性褐煤半焦对废水中Cd(Ⅱ)的吸附效果[J]. 材料保护, 2017, 50(3):74-78.
    [22]
    中华人民共和国生态环境部. 水质六价铬的测定-二苯碳酰二肼分光光度法:GB 7467-1987[S]. 北京,1987.
    [23]
    FENG Z Q, CHEN H L, LI H Q, et al. Microwave-assisted KOH activated lignite semi-coke for treatment of biologically treated wastewater from pulp and paper mill[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103924.
    [24]
    SCHNEIDER P. Adsorption isotherms of microporous-mesoporous solids revisited[J]. Applied Catalysis A:General, 1995, 129(2):157-165.
    [25]
    周军, 吴雷, 梁坤, 等. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1):191-197.
    [26]
    武少杰, 郭成, 胡笳, 等. 生物质吸附材料对Cr(Ⅵ)的吸附还原研究进展[J]. 过程工程学报, 2021, 21(12):1383-1394.
    [27]
    CHEN Y, ZHANG X M, LIU Q Y, et al. Facile and economical synthesis of porous activated semi-cokes for highly efficient and fast removal of microcystin-LR[J]. Journal of Hazardous Materials, 2015, 299:325-332.
    [28]
    李克斌, 王勤勤, 党艳, 等. 荞麦皮生物吸附去除水中Cr(Ⅵ)的吸附特性和机理[J]. 化学学报, 2012, 70(7):929-937.
    [29]
    CHEN R H, CHENG Y Y, WANG P, et al. High efficient removal and mineralization of Cr(Ⅵ) from water by functionalized magnetic fungus nanocomposites[J]. Journal of Central South University, 2020, 27(5):1503-1514.
    [30]
    JIANG C L, WANG R, CHEN X, et al. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(Ⅵ) in water[J]. Journal of Central South University, 2021, 28(6):1652-1664.
    [31]
    ZENG B Y, XU W B, KHAN S B, et al. Preparation of sludge biochar rich in carboxyl/hydroxyl groups by quenching process and its excellent adsorption performance for Cr(Ⅵ)[J]. Chemosphere, 2021, 285(3/4):131439.
    [32]
    JIA D M, CAI H M, DUAN Y Z, et al. Efficient adsorption to hexavalent chromium by iron oxalate modified D301:characterization, performance and mechanisms[J]. Chinese Journal of Chemical Engineering, 2021, 33(5):61-69.
    [33]
    KARNJANAKOM S, MANEECHAKR P. Adsorption behaviors and capacities of Cr(Ⅵ) onto environmentally activated carbon modified by cationic (HDTMA and DDAB) surfactants[J]. Journal of Molecular Structure, 2019, 1186:80-90.
    [34]
    石健, 曹澄君, 范素素. 不同环境激素吸附行为及机理的对比研究[J]. 工业安全与环保, 2018, 44(4):104-106.
    [35]
    杨宝滋, 毛磊, 朱小涛, 等. 赋硫活性炭对Cr(Ⅵ)的吸附机理[J]. 环境工程学报, 2016, 10(4):1740-1748.
    [36]
    刘振中, 邓慧萍, 詹健, 等. 改性活性炭除亚砷酸盐的性能研究[J]. 环境科学, 2009, 30(3):780-786.
    [37]
    KAR S, EQUEENUDDIN S M. Adsorption of hexavalent chromium using natural goethite:isotherm, thermodynamic and kinetic study[J]. Journal of the Geological Society of India, 2019, 93(3):285-292.
    [38]
    SUGASHINI S, BEGUM K M M S. Preparation of activated carbon from carbonized rice husk by ozone activation for Cr(Ⅵ) removal[J]. New Carbon Materials, 2015, 30(3):252-261.
    [39]
    蒋绪, 兰新哲, 景兴鹏, 等. 不同介质下物理法活化制备兰炭基活性炭实验研究[J]. 煤炭转化, 2019, 42(2):65-71.
  • Relative Articles

    [1]LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003
    [4]DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023
    [5]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [6]ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022
    [7]XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
    [8]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [9]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018
    [12]ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
    [13]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [14]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
    [15]BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034
    [16]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [20]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 .
    2. 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 .
    3. 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 .
    4. 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 .
    5. 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 .
    6. 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 .
    7. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    8. 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 .
    9. 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 .
    10. 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 .
    11. 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 .
    12. 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . 本站查看
    13. 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 85.6 %META: 85.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 3.4 %上海: 3.4 %东莞: 5.3 %东莞: 5.3 %临汾: 0.2 %临汾: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.3 %佛山: 0.3 %保定: 0.5 %保定: 0.5 %克拉玛依: 1.0 %克拉玛依: 1.0 %兰州: 0.8 %兰州: 0.8 %北京: 6.2 %北京: 6.2 %南京: 1.3 %南京: 1.3 %南充: 0.3 %南充: 0.3 %南昌: 0.8 %南昌: 0.8 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %喀什: 0.2 %喀什: 0.2 %大同: 0.2 %大同: 0.2 %大庆: 0.6 %大庆: 0.6 %大连: 0.3 %大连: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.6 %太原: 0.6 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %宝鸡: 1.3 %宝鸡: 1.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %庆阳: 0.3 %庆阳: 0.3 %张家口: 1.8 %张家口: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %拉萨: 0.3 %拉萨: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.9 %杭州: 3.9 %武汉: 1.8 %武汉: 1.8 %汉中: 0.3 %汉中: 0.3 %汕头: 0.2 %汕头: 0.2 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淮北: 0.3 %淮北: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 1.1 %温州: 1.1 %渭南: 0.5 %渭南: 0.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.6 %湛江: 0.6 %滨州: 0.2 %滨州: 0.2 %漯河: 1.9 %漯河: 1.9 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.8 %烟台: 0.8 %牛津: 0.2 %牛津: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %舟山: 0.5 %舟山: 0.5 %芒廷维尤: 10.2 %芒廷维尤: 10.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.5 %荆州: 0.5 %萨拉戈萨: 0.3 %萨拉戈萨: 0.3 %衡水: 0.8 %衡水: 0.8 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 1.0 %西安: 1.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 1.0 %长治: 1.0 %青岛: 1.5 %青岛: 1.5 %鹤壁: 0.5 %鹤壁: 0.5 %其他上海东莞临汾伊利诺伊州佛山保定克拉玛依兰州北京南京南充南昌台北台州合肥呼和浩特哈尔滨喀什大同大庆大连天津太原威海安康宝鸡宣城常州常德广州庆阳张家口成都扬州拉萨无锡昆明晋城朝阳杭州武汉汉中汕头沈阳洛阳济南济宁淮北深圳温州渭南湖州湘潭湛江滨州漯河潍坊烟台牛津盐城石家庄福州舟山芒廷维尤芝加哥苏州荆州萨拉戈萨衡水衢州襄阳西宁西安贵阳运城遵义邢台郑州重庆长春长沙长治青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(7) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return