Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
Citation: ZHANG Mingchuan, CHEN Xi, WANG Wenjing, XU Xinyang. RESEARCH ON TREATMENT PERFORMANCE AND DYNAMICS OF ZINC CONTAINING WASTEWATER BY SPRAY BED ELECTRO-DEPOSITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 37-42. doi: 10.13205/j.hjgc.202302006

RESEARCH ON TREATMENT PERFORMANCE AND DYNAMICS OF ZINC CONTAINING WASTEWATER BY SPRAY BED ELECTRO-DEPOSITION

doi: 10.13205/j.hjgc.202302006
  • Received Date: 2022-02-11
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Experiments were carried out by using self-designed spray bed electro-deposition devices to treat zinc-containing wastewater under different conditions including pH value, current intensity, zinc ions concentration and bubbling nitrogen. The effect of the spray bed electro-deposition system on treatment of zinc-containing wastewater was investigated and the parameters were optimized. The results showed that the optimized condition was as follows:the particle size of electrode of 1.8 mm, zinc ions concentration of 1000 mg/L, wastewater pH value of 4.5, current value of 15 A and bubbling nitrogen of 600 L/h, then the removal rate of zinc ions was up to 49.44% and the current efficiency was 41.63%. On this basis, the dynamic model of single metal ion electro-deposition was established by dynamic simulation analysis, which proved the reliability of the measured data and the accuracy of the experimental results.
  • [1]
    黄俊文. 铅锌选矿废水净化处理与循环回用试验研究[J]. 矿冶工程,2021,41(3):64-67.
    [2]
    向中兰. 补锌过量对人体的危害[J]. 现代医药卫生,2001,17(9):727.
    [3]
    XU Z, ZHANG Q R, LI X C, et al. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chemical Engineering Journal,2022,429:131688.
    [4]
    于栋,罗庆,苏伟,等. 重金属废水电沉积处理技术研究及应用进展[J]. 化工进展,2020,39(5):1938-1949.
    [5]
    崔志新,任庆凯,艾胜书,等. 重金属废水处理及回收的研究进展[J]. 环境科学与技术,2010,33(12):375-377.
    [6]
    THILAKAVATHI R,BALASUBRAMANIAN N,BASHA C A. Modeling electrowinning process in an expanded bed electrode[J]. Journal of Hazardous Materials,2009,162(1):154-160.
    [7]
    GRIMSHAW P, CALO J M, HRADIL G. Co-electrodeposition/removal of copper and nickel in a spouted electrochemical reactor[J]. Industrial & Engineering Chemistry Research,2011,50(16):9532-9538.
    [8]
    GONZÁLEZ M A, TRÓCOLI R, PAVLOVIC I, et al. Capturing Cd(Ⅱ) and Pb(Ⅱ) from contaminated water sources by electro-deposition on hydrotalcite-like compounds[J]. Physical Chemistry Chemical Physics,2016,18(3):1838-1845.
    [9]
    YA V, MARTIN N, CHOU Y, et al. Efficient Cu removal from CuEDTA complex-containingwastewaterusing electrochemically controlled sacrificial iron anode[J]. Chemosphere,2021,264(2):128573.
    [10]
    胡美清,金伟. 电吸附-电沉积联合作用下的低浓度铜离子分离[J]. 过程工程学报,2021,21(8):976-984.
  • Relative Articles

    [1]LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003
    [4]DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023
    [5]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [6]ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022
    [7]XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
    [8]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [9]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018
    [12]ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
    [13]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [14]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
    [15]BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034
    [16]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [20]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 .
    2. 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 .
    3. 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 .
    4. 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 .
    5. 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 .
    6. 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 .
    7. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    8. 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 .
    9. 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 .
    10. 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 .
    11. 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 .
    12. 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . 本站查看
    13. 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 85.6 %META: 85.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 3.4 %上海: 3.4 %东莞: 5.3 %东莞: 5.3 %临汾: 0.2 %临汾: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.3 %佛山: 0.3 %保定: 0.5 %保定: 0.5 %克拉玛依: 1.0 %克拉玛依: 1.0 %兰州: 0.8 %兰州: 0.8 %北京: 6.2 %北京: 6.2 %南京: 1.3 %南京: 1.3 %南充: 0.3 %南充: 0.3 %南昌: 0.8 %南昌: 0.8 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %喀什: 0.2 %喀什: 0.2 %大同: 0.2 %大同: 0.2 %大庆: 0.6 %大庆: 0.6 %大连: 0.3 %大连: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.6 %太原: 0.6 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %宝鸡: 1.3 %宝鸡: 1.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %庆阳: 0.3 %庆阳: 0.3 %张家口: 1.8 %张家口: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %拉萨: 0.3 %拉萨: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.9 %杭州: 3.9 %武汉: 1.8 %武汉: 1.8 %汉中: 0.3 %汉中: 0.3 %汕头: 0.2 %汕头: 0.2 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淮北: 0.3 %淮北: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 1.1 %温州: 1.1 %渭南: 0.5 %渭南: 0.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.6 %湛江: 0.6 %滨州: 0.2 %滨州: 0.2 %漯河: 1.9 %漯河: 1.9 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.8 %烟台: 0.8 %牛津: 0.2 %牛津: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %舟山: 0.5 %舟山: 0.5 %芒廷维尤: 10.2 %芒廷维尤: 10.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.5 %荆州: 0.5 %萨拉戈萨: 0.3 %萨拉戈萨: 0.3 %衡水: 0.8 %衡水: 0.8 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 1.0 %西安: 1.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 1.0 %长治: 1.0 %青岛: 1.5 %青岛: 1.5 %鹤壁: 0.5 %鹤壁: 0.5 %其他上海东莞临汾伊利诺伊州佛山保定克拉玛依兰州北京南京南充南昌台北台州合肥呼和浩特哈尔滨喀什大同大庆大连天津太原威海安康宝鸡宣城常州常德广州庆阳张家口成都扬州拉萨无锡昆明晋城朝阳杭州武汉汉中汕头沈阳洛阳济南济宁淮北深圳温州渭南湖州湘潭湛江滨州漯河潍坊烟台牛津盐城石家庄福州舟山芒廷维尤芝加哥苏州荆州萨拉戈萨衡水衢州襄阳西宁西安贵阳运城遵义邢台郑州重庆长春长沙长治青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(3) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return