Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
QIN Yu, SHU Yuqing, WANG Yuxiao. VARIATION CHARACTERISTICS OF CO2 FLUXES IN THE MAIN STREAM AND TYPICAL TRIBUTARIES OF WANZHOU SECTION OF THE THREE GORGES RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 43-52. doi: 10.13205/j.hjgc.202302007
Citation: QIN Yu, SHU Yuqing, WANG Yuxiao. VARIATION CHARACTERISTICS OF CO2 FLUXES IN THE MAIN STREAM AND TYPICAL TRIBUTARIES OF WANZHOU SECTION OF THE THREE GORGES RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 43-52. doi: 10.13205/j.hjgc.202302007

VARIATION CHARACTERISTICS OF CO2 FLUXES IN THE MAIN STREAM AND TYPICAL TRIBUTARIES OF WANZHOU SECTION OF THE THREE GORGES RESERVOIR

doi: 10.13205/j.hjgc.202302007
  • Received Date: 2021-12-29
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • The emission of greenhouse gases in the Three Gorges Reservoir area has attracted much attention in recent years, but the current research lacks the analysis of the impact of biochemical processes during algal blooms on CO2 production and sinks in water body. So this research took the mainstream, Wanzhou Section of Three Gorges Reservoir, and a typical tributary, Pengxi River as the objects to carry out an investigation. The result showed that there were significant spatial differences in the correlation between the main stream and tributary CO2 concentration and flux, environmental factors and biogenic substances.The concentration of CO2 in tributary water was significantly negatively correlated with water temperature, pH and DO, and significantly positively correlated with DOC and DTP. There was a significant negative correlation between CO2 flux at the water-air interface and water temperature, and a significant positive correlation with DTP and CO2 concentration. The concentration of CO2 in the main stream water was negatively correlated with pH, and positively correlated with DIC, DOC, NH+4-N. The CO2 flux at the water-air interface was significantly positively correlated with the concentrations of NH+4-N and CO2. The changes of CO2 fluxes at the water-air interface at Gaoyang, Huangshi, and Wanzhou were basically consistent with the changes of CO2 concentrations in their respective surface waters. Algae fixes CO2 as they grow, boosting carbon sinks. The process of algal bloom will cause regional hypoxia or even anaerobicity. The reason was that algae accumulate, accumulate, and die on the water surface, which consumed the dissolved oxygen in the water and provided a decomposition environment for microorganisms in the sediment. The organic matter that sank into the sediments provided a carbon source for microorganisms, and then mineralization occursed to generate greenhouse gases such as CO2.
  • loading
  • [1]
    ZHAO Y,WU B F,ZENG Y.Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China[J].Biogeosciences,2013,10(2):1219-1220.
    [2]
    HUANG W M,BI Y H,HU Z Y,et al.Spatio-temporal variations of GHG emissions from surface water of Xiangxi River in Three Gorges Reservoir region,China[J].Ecological Engineering,2015,83(83):28-32.
    [3]
    MAAVARA T, CHEN W Q, METER K V,et al.River dam impacts on biogeochemical cycling[J].Nature Reviews Earth & Environment,2020,4(1):103-116.
    [4]
    杨正健,刘德富,纪道斌,等.防控支流库湾水华的三峡水库潮汐式生态调度可行性研究[J].水电能源科学,2015,33(12):48-50

    ,109.
    [5]
    中国环境监测总站主编.长江三峡工程生态与环境监测公报[R].北京:国家环境保护总局,2005-07-15(10).
    [6]
    李崇明,黄真理.三峡水库入库污染负荷研究(Ⅱ):蓄水后污染负荷预测[J].长江流域资源与环境,2006,15(1):97-106.
    [7]
    秦宇,张渝阳,李哲,等.三峡澎溪河水华期间水体CH4浓度及其通量变化特征初探[J].环境科学,2018,39(4):1578-1588.
    [8]
    吴兴华,李翀,陈磊,等.三峡水库香溪河库湾拟多甲藻(Peridiniopsis)的昼夜垂直迁移行为对碳磷分布的响应[J].湖泊科学,2018,30(1):121-129.
    [9]
    TREMBLAY A,VARFALVY L,ROEHM C,et al. Greenhouse Gas Emissions-Fluxes and Processes[M].2005.
    [10]
    BILLEN T,LIBNER P,FISCHER R, et al.Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J].Tellus Series B-Chemical and Physical Meteorology,1989,41(2):177-195.
    [11]
    赵颖.水文、气象因子对藻类生长影响作用的试验研究[D].南京:河海大学,2006.
    [12]
    杨博逍.三峡以及金沙江下游水库水气界面温室气体通量对比研究[D].重庆:重庆交通大学,2017.
    [13]
    张莹莹,张经,吴莹,等.长江口溶解氧的分布特征及影响因素研究[J].环境科学,2007,28(8):1649-1654.
    [14]
    杨庆,杨泽凡,胡鹏,等.水体中溶解氧含量与其物理影响因素的实验研究[J].水利学报,2019,50(6):679-686.
    [15]
    胡念三,刘德富,纪道斌,等.三峡水库干流倒灌对支流库湾营养盐分布的影响[J].环境科学与技术,2012,35(10):6-11.
    [16]
    苏青青,纪道斌,崔玉洁,等.蓄水期三峡水库香溪河沉积物-水系统营养盐分布特征[J].环境科学,2018,39(5):2135-2144.
    [17]
    朱爱民,李嗣新,胡俊,等.三峡水库支流拟多甲藻水华的形成机制[J].生态学报,2014,34(11):3071-3080.
    [18]
    姜伟.三峡库区澎溪河高阳平湖水环境及内源磷释放关系研究[D].重庆:西南大学,2017.
    [19]
    姜伟,周川,纪道斌,等.三峡库区澎溪河与磨刀溪电导率等水质特征与水华的关系比较[J].环境科学,2017,38(6):2326-2335.
    [20]
    LI S Y,LU X X,BUSH R T.CO2 partial pressure and CO2 emission in the Lower Mekong River[J].Journal of Hydrology,2013,504(24):40-56.
    [21]
    张远,郑丙辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护,2005,21(6):23-26.
    [22]
    DEMARTY M,BASTIEN J,TREMBLAY A,et al.Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec,Canada,measured with automated systems[J]. Environmental Science & Technology,2009,43(23):8908-8915.
    [23]
    TADONLEKE R D,MARTY J,PLANAS D. Assessing factors underlying variation of CO2 emissions in boreal lakes vs.reservoirs[J].FEMS Microbiology Ecology,2012,79(2):282-297.
    [24]
    HALBEDEL S,KOSCHORRECK M.Regulation of CO2 emissions from temperate streams and reservoirs[J].Biogeosciences,2013,10(11):7539-7551.
    [25]
    曹玉平,袁热林,焦树林,等.光照水库夏季分层期间二氧化碳分压分布特征[J].环境科学与技术,2018,41(6):15-21.
    [26]
    赵登忠,谭德宝,李翀,等.隔河岩水库二氧化碳通量时空变化及影响因素[J].环境科学,2017,38(3):954-963.
    [27]
    赵梦,焦树林,梁虹,等.万峰湖水库回水区二氧化碳分压及扩散通量特征时空变化[J].环境化学,2019,38(6):1307-1317.
    [28]
    CHISLOCK M F,SARNELLE O,JERNIGAN L M,et al.Do high concentrations of microcystin prevent Daphnia control of phytoplankton?[J].Water Research,2013,47(6):1961-1970.
    [29]
    NILSEN E,MORACE J.Foodweb transfer,sediment transport,and biological impacts of emerging and legacy organic contaminants in the lower Columbia River,Oregon and Washington,USA:USGS Contaminants and Habitat (ConHab) Project[J].Science of the Total Environment,2014,484:319-321.
    [30]
    朱旭宇,黄伟,曾江宁,等.氮磷比对冬季浮游植物群落结构的影响[J].应用与环境生物学报,2013,19(2):293-299.
    [31]
    SCHINDLER D W.Eutrophication and recovery in experimental lakes:implications for lake management[J].Science,1974,184(4139):897-899.
    [32]
    XU H,PAERL H W,QIN B Q,et al.Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China[J].Limnology and Oceanography,2010,55(1):420-423.
    [33]
    DAVIS T W,BERRY D L,BOYER G L,et al.The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms[J].Harmful Algae,2009,8(5):715-725.
    [34]
    BELGER L,FORSBERG B R,MELACK J M.Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil[J].Biogeochemistry,2011,105(1/3):171-183.
    [35]
    HARGRAVE C W,GARY K P,ROSADO S K.Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems:a test using experimental stream mesocosms[J].Global Change Biology,2009,15(11):2779-2790.
    [36]
    赵旭辉,汤龙升,史小丽,等.模拟大气CO2水平升高对春季太湖浮游植物生理特性的影响[J].环境科学,2013,34(6):2126-2133.
    [37]
    TROLLE D,STAEHR P A,DAVIDSON T A,et al.Seasonal dynamics of CO flux across the surface of shallow temperate lakes[J].Ecosystems,2012,15(2):1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return