Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
Citation: ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009

EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM

doi: 10.13205/j.hjgc.202302009
  • Received Date: 2021-11-18
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • In order to investigate the effect of dissolved oxygen on the dissolution of sponge iron in the biological sponge iron system, sponge iron was involved in the activated sludge to form the biological sponge iron system. By simulating the corrosion state of sponge iron in the actual reactor and measuring the TFe content in the biological sponge iron system, the effect of dissolved oxygen on the dissolution of sponge iron was studied. By making sponge iron into a working electrode and intervening into the activated sludge, the effect of dissolved oxygen on the corrosion rate and polarization resistance of sponge iron in the biological sponge iron system was studied by AUTOLAB electrochemical workstation. The results showed that in the biological sponge iron system, TFe dissolution of sponge iron was positively correlated with the DO concentration of the reaction system, and the effect became more and more obvious with the prolonging of running time. With the increase of dissolved oxygen in activated sludge mixed solution, the corrosion potential moved negatively, the corrosion current moved positively, the corrosion tendency increased, and the corrosion effect became stronger. Through the polarization curve and parameters analysis, the polarization resistance of sponge iron under different dissolved oxygen followed the order of (6.5±0.5) mg/L<(3.5±0.2) mg/L<(0.5±0.2) mg/L. Under anoxic condition, the corrosion resistance was stronger, and dissolved oxygen could reduce the polarization resistance and promote the corrosion of sponge iron filler.
  • [1]
    王文娟. 海绵铁/O2体系类Fenton效应及其对难降解有机物(以苯胺为例)降解效果研究[D].兰州:兰州交通大学,2016.
    [2]
    谢慧娜,王亚娥,李杰,等.不同价态铁处理腈纶废水过程中菌群结构分析[J].中国环境科学,2018,38(9):3406-3412.
    [3]
    张发奎,徐卫东,李杰,等.PFMF载体强化SBR处理焦化废水效果研究[J].工业水处理,2021,41(4):84-88.
    [4]
    谢慧娜. 生物海绵铁体系处理难降解有机物过程中生物强化机制研究[D].兰州:兰州交通大学,2021.
    [5]
    李杰,王亚娥,王志盈,等.生物海绵铁在生活污水脱氮除磷中的应用研究[J].中国给水排水,2007,23(1):97-100.
    [6]
    XIE H N, LI J, WANG Y E, et al. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline[J]. Process Biochemistry, 2021, 101:230-236.
    [7]
    SI Z H, SONG X S, WANG Y H, et al. Untangling the nitrate removal pathways for a constructed wetland-sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393:122407.
    [8]
    WANG Q P, LIAO Z Y, YAO D X, et al. Phosphorus immobilization in water and sediment using iron-based materials:a review-ScienceDirect[J]. Science of the Total Environment, 2020,767(1):144246.
    [9]
    郑莹, 王亚娥, 牟彪. 具有铁氧化功能的硝基苯降解菌的筛选及特性[J]. 中国环境科学, 2018, 38(5):1837-1843.
    [10]
    刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017,37(3):195-206.
    [11]
    KUKLINSKI A, SAND W. Microbiologically Influenced Corrosion Inhibition[M]//Ota K L, Kreysa G, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York, NY, Springer New York, 2014:1290-1297.
    [12]
    SANCY M, GOURBEYRE Y, SUTTER E, et al. Mechanism of corrosion of cast iron covered by aged corrosion products:application of electrochemical impedance spectrometry[J]. Corrosion Science, 2010, 52(4):1222-1227.
    [13]
    FU Q, XU J, WEI B X, et al. The effect of nitrate reducing bacteria on the corrosion behavior of X80 pipeline steel in the soil extract solution of Shenyang[J]. International Journal of Pressure Vessels and Piping, 2021,190:104313.
    [14]
    YANG H Y, LIU Q, CHEN G B, et al. Bio-dissolution of pyrite by Phanerochaete chrysosporium[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4):766-774.
    [15]
    WURZLER N, SCHUTTER J D, WAGNER R,et al.Abundance of Fe(Ⅲ) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens[J]. Corrosion Science, 2020, 174(9):108855.
    [16]
    夏春兰,吴田,刘海宁,等.铁极化曲线的测定及应用实验研究[J].大学化学, 2003,18(5):38-41.
    [17]
    许莹, 王欢欢, 何世宇,等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.
    [18]
    LV M Y, DU M, LI X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria[J]. Journal of Materials Research and Technology, 2019, 8(5):4066-4078.
    [19]
    刘晓伟, 谢丹平, 李开明,等. 溶解氧变化对底泥酶活性及微生物多样性的影响[J]. 环境科学与技术, 2013, 36(6):6-11.
    [20]
    裘智超, 张玉楠, 叶正荣,等. 控氧对注水井管柱腐蚀行为的影响[J]. 材料保护, 2019,52(5):48-52.
    [21]
    董杰,董俊华,韩恩厚,等. 低碳钢带锈电极的腐蚀行为[J]. 腐蚀科学与防护技术, 2006, 18(6):414-417.
    [22]
    邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30(4):241-247.
    [23]
    ANDREW F, POURIA G, BURKAN I O, et al. A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete[J]. Materials and Corrosion, 2018,69(12):1810263.
    [24]
    NGUYEN W, DUNCAN J F, DEVINE T M, et al. Electrochemical polarization and impedance of reinforced concrete and hybrid fibre-reinforced concrete under cracked matrix conditions[J]. Electrochimica Acta, 2018, 271:319-336.
    [25]
    张倩, 王鹏, 张盾. 溶解氧对304不锈钢的微生物腐蚀的影响[C]//中国腐蚀电化学及测试方法专业委员会2012学术年会论文集.2012:109-110.
  • Relative Articles

    [1]LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003
    [4]DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023
    [5]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [6]ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022
    [7]XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
    [8]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [9]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018
    [12]ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
    [13]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [14]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
    [15]BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034
    [16]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [20]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 .
    2. 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 .
    3. 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 .
    4. 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 .
    5. 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 .
    6. 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 .
    7. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    8. 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 .
    9. 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 .
    10. 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 .
    11. 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 .
    12. 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . 本站查看
    13. 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 85.6 %META: 85.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 3.4 %上海: 3.4 %东莞: 5.3 %东莞: 5.3 %临汾: 0.2 %临汾: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.3 %佛山: 0.3 %保定: 0.5 %保定: 0.5 %克拉玛依: 1.0 %克拉玛依: 1.0 %兰州: 0.8 %兰州: 0.8 %北京: 6.2 %北京: 6.2 %南京: 1.3 %南京: 1.3 %南充: 0.3 %南充: 0.3 %南昌: 0.8 %南昌: 0.8 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %喀什: 0.2 %喀什: 0.2 %大同: 0.2 %大同: 0.2 %大庆: 0.6 %大庆: 0.6 %大连: 0.3 %大连: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.6 %太原: 0.6 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %宝鸡: 1.3 %宝鸡: 1.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %庆阳: 0.3 %庆阳: 0.3 %张家口: 1.8 %张家口: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %拉萨: 0.3 %拉萨: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.9 %杭州: 3.9 %武汉: 1.8 %武汉: 1.8 %汉中: 0.3 %汉中: 0.3 %汕头: 0.2 %汕头: 0.2 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淮北: 0.3 %淮北: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 1.1 %温州: 1.1 %渭南: 0.5 %渭南: 0.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.6 %湛江: 0.6 %滨州: 0.2 %滨州: 0.2 %漯河: 1.9 %漯河: 1.9 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.8 %烟台: 0.8 %牛津: 0.2 %牛津: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %舟山: 0.5 %舟山: 0.5 %芒廷维尤: 10.2 %芒廷维尤: 10.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.5 %荆州: 0.5 %萨拉戈萨: 0.3 %萨拉戈萨: 0.3 %衡水: 0.8 %衡水: 0.8 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 1.0 %西安: 1.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 1.0 %长治: 1.0 %青岛: 1.5 %青岛: 1.5 %鹤壁: 0.5 %鹤壁: 0.5 %其他上海东莞临汾伊利诺伊州佛山保定克拉玛依兰州北京南京南充南昌台北台州合肥呼和浩特哈尔滨喀什大同大庆大连天津太原威海安康宝鸡宣城常州常德广州庆阳张家口成都扬州拉萨无锡昆明晋城朝阳杭州武汉汉中汕头沈阳洛阳济南济宁淮北深圳温州渭南湖州湘潭湛江滨州漯河潍坊烟台牛津盐城石家庄福州舟山芒廷维尤芝加哥苏州荆州萨拉戈萨衡水衢州襄阳西宁西安贵阳运城遵义邢台郑州重庆长春长沙长治青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (150) PDF downloads(3) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return