Citation: | ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009 |
[1] |
王文娟. 海绵铁/O2体系类Fenton效应及其对难降解有机物(以苯胺为例)降解效果研究[D].兰州:兰州交通大学,2016.
|
[2] |
谢慧娜,王亚娥,李杰,等.不同价态铁处理腈纶废水过程中菌群结构分析[J].中国环境科学,2018,38(9):3406-3412.
|
[3] |
张发奎,徐卫东,李杰,等.PFMF载体强化SBR处理焦化废水效果研究[J].工业水处理,2021,41(4):84-88.
|
[4] |
谢慧娜. 生物海绵铁体系处理难降解有机物过程中生物强化机制研究[D].兰州:兰州交通大学,2021.
|
[5] |
李杰,王亚娥,王志盈,等.生物海绵铁在生活污水脱氮除磷中的应用研究[J].中国给水排水,2007,23(1):97-100.
|
[6] |
XIE H N, LI J, WANG Y E, et al. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline[J]. Process Biochemistry, 2021, 101:230-236.
|
[7] |
SI Z H, SONG X S, WANG Y H, et al. Untangling the nitrate removal pathways for a constructed wetland-sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393:122407.
|
[8] |
WANG Q P, LIAO Z Y, YAO D X, et al. Phosphorus immobilization in water and sediment using iron-based materials:a review-ScienceDirect[J]. Science of the Total Environment, 2020,767(1):144246.
|
[9] |
郑莹, 王亚娥, 牟彪. 具有铁氧化功能的硝基苯降解菌的筛选及特性[J]. 中国环境科学, 2018, 38(5):1837-1843.
|
[10] |
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017,37(3):195-206.
|
[11] |
KUKLINSKI A, SAND W. Microbiologically Influenced Corrosion Inhibition[M]//Ota K L, Kreysa G, Savinell R F, eds. Encyclopedia of Applied Electrochemistry. New York, NY, Springer New York, 2014:1290-1297.
|
[12] |
SANCY M, GOURBEYRE Y, SUTTER E, et al. Mechanism of corrosion of cast iron covered by aged corrosion products:application of electrochemical impedance spectrometry[J]. Corrosion Science, 2010, 52(4):1222-1227.
|
[13] |
FU Q, XU J, WEI B X, et al. The effect of nitrate reducing bacteria on the corrosion behavior of X80 pipeline steel in the soil extract solution of Shenyang[J]. International Journal of Pressure Vessels and Piping, 2021,190:104313.
|
[14] |
YANG H Y, LIU Q, CHEN G B, et al. Bio-dissolution of pyrite by Phanerochaete chrysosporium[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4):766-774.
|
[15] |
WURZLER N, SCHUTTER J D, WAGNER R,et al.Abundance of Fe(Ⅲ) during cultivation affects the microbiologically influenced corrosion (MIC) behaviour of iron reducing bacteria Shewanella putrefaciens[J]. Corrosion Science, 2020, 174(9):108855.
|
[16] |
夏春兰,吴田,刘海宁,等.铁极化曲线的测定及应用实验研究[J].大学化学, 2003,18(5):38-41.
|
[17] |
许莹, 王欢欢, 何世宇,等. TiO2纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52-57.
|
[18] |
LV M Y, DU M, LI X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria[J]. Journal of Materials Research and Technology, 2019, 8(5):4066-4078.
|
[19] |
刘晓伟, 谢丹平, 李开明,等. 溶解氧变化对底泥酶活性及微生物多样性的影响[J]. 环境科学与技术, 2013, 36(6):6-11.
|
[20] |
裘智超, 张玉楠, 叶正荣,等. 控氧对注水井管柱腐蚀行为的影响[J]. 材料保护, 2019,52(5):48-52.
|
[21] |
董杰,董俊华,韩恩厚,等. 低碳钢带锈电极的腐蚀行为[J]. 腐蚀科学与防护技术, 2006, 18(6):414-417.
|
[22] |
邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30(4):241-247.
|
[23] |
ANDREW F, POURIA G, BURKAN I O, et al. A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete[J]. Materials and Corrosion, 2018,69(12):1810263.
|
[24] |
NGUYEN W, DUNCAN J F, DEVINE T M, et al. Electrochemical polarization and impedance of reinforced concrete and hybrid fibre-reinforced concrete under cracked matrix conditions[J]. Electrochimica Acta, 2018, 271:319-336.
|
[25] |
张倩, 王鹏, 张盾. 溶解氧对304不锈钢的微生物腐蚀的影响[C]//中国腐蚀电化学及测试方法专业委员会2012学术年会论文集.2012:109-110.
|
[1] | LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028 |
[2] | ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012 |
[3] | ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003 |
[4] | DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023 |
[5] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[6] | ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022 |
[7] | XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017 |
[8] | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[9] | LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023 |
[10] | LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009 |
[11] | SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018 |
[12] | ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015 |
[13] | XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026 |
[14] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |
[15] | BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034 |
[16] | ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006 |
[20] | Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6. |
1. | 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 . ![]() | |
2. | 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 . ![]() | |
3. | 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 . ![]() | |
4. | 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 . ![]() | |
5. | 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 . ![]() | |
6. | 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 . ![]() | |
7. | 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . ![]() | |
8. | 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 . ![]() | |
9. | 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 . ![]() | |
10. | 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 . ![]() | |
11. | 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 . ![]() | |
12. | 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . ![]() | |
13. | 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 . ![]() |