Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010
Citation: LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010

ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY

doi: 10.13205/j.hjgc.202302010
  • Received Date: 2022-07-04
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Engineering practice showed that the adsorption performance of Y molecular sieve was greatly reduced under high humidity environment. In this paper, Y@mesoSiO2 was obtained by pretreating polydiallyl dimethylammonium chloride (PDDA) along with the growth of mesoSiO2 shell on Y molecular sieve. Polydimethylsiloxane (PDMS) was further grafted onto mesoSiO2 shell to prepare Y@mesoSiO2-S via chemical vapor deposition method. The morphology and structure of the modified Y molecular sieve were analyzed by SEM, TEM, XRD, XPS, surface area and pore size analyzer. Besides, the adsorption of water and toluene was evaluated by static and dynamic adsorption experiments. The results showed that the mesoSiO2 shell successfully grew on the outer surface of Y molecular sieve and PDMS was successfully grafted onto the Y@mesoSiO2 shell. Compared with Y molecular sieve, the BET specific surface area (SBET) of Y@mesoSiO2-S increased by 2%; meanwhile, the water contact angle was enhanced significantly, causing the static water absorption decreased from 298 mg/g to 79 mg/g, and the dynamic water absorption decreased from 245 mg/g to 76 mg/g. The saturated adsorption capacity of toluene on Y@mesoSiO2-S and Y molecular sieve were 167.2 mg/g and 2.6 mg/g at an RH of 80%, respectively, which decreased by 6.7% and 98.3% relatively, compared with an RH of 20%. When compared with Y-S without mesoSiO2 shell, Y@mesoSiO2-S presented increased SBET and the saturated adsorption capacity of toluene with 46% and 51% at an RH of 80%, respectively. This indicated that mesoSiO2 shell was introduced between Y molecular sieve and PDMS, which could avoid clogging of porosity caused by direct grafting PDMS on the surface of Y molecular sieve. Furthermore, this strategy could improve the hydrophobic property of Y molecular sieve, resulting in enhanced adsorption performance on toluene under high humidity.
  • loading
  • [1]
    YANG C T, MIAO G, PI Y H, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation:a review[J]. Chemical Engineering Journal, 2019, 370:1128-1153.
    [2]
    GUO X C, LI X Y, GAN G Q, et al. Functionalized activated carbon for competing adsorption of volatile organic compounds and water[J]. ACS Applied Materials & Interfaces, 2021, 13(47):56510-56518.
    [3]
    JESUS L, JOSE P, LUISA G S, et al. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon[J]. Chemical Engineering Journal, 2012, 211:246-254.
    [4]
    ZHANG X Y, GAO B, ANNE E C, et al. Adsorption of VOCs onto engineered carbon materials:a review[J]. Journal of Hazardous Materials, 2017, 338:102-123.
    [5]
    PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1):41-78.
    [6]
    黄心, 刘荣, 李红梅, 等. VOCs处理技术研究进展[J]. 广州化工, 2021, 49(13):30-34.
    [7]
    徐遵主,陆朝阳, 张纪文,等. 长三角典型城市工业VOCs处理技术应用状况分析[J]. 环境工程, 2020, 38(1):6.
    [8]
    冯爱虎, 于洋, 余云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10):757-773.
    [9]
    党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11):3479-3492.
    [10]
    LIU S H, PENG Y, CHEN J J, et al. Engineering surface functional groups on mesoporous silica:towards a humidity-resistant hydrophobic adsorbent[J]. Journal of Materials Chemistry, 2018, 6(28):13769-13777.
    [11]
    MOTEKI T, LOBO R F. A general method for aluminum incorporation into high-silica zeolites prepared in fluoride media[J]. Chemistry of Materials, 2016, 28(2):638-649.
    [12]
    ZUO X T, CHENG Q, SENLIN M, et al. Removal of sulfonamide antibiotics from water by high-silica ZSM-5[J]. Water Science and Technology, 2019, 80(3):507-516.
    [13]
    LI R N, XUE T S, BINGRE R, et al. Microporous zeolite@vertically aligned Mg-Al layered double hydroxide core@shell structures with improved hydrophobicity and toluene adsorption capacity under wet conditions[J]. ACS Applied Materials & Interfaces, 2018, 10(41):34834-34839.
    [14]
    YU Y F, ZHENG L W, Wang J D. Adsorption behavior of toluene on modified 1X molecular sieves[J]. Journal of the Air & Waste Management Association, 2012, 62(10):1227-1232.
    [15]
    MENG X, JIN L P, YANG C, et al. Adsorption of toluene on silicalite-1/NaY composites:influence of NaY pretreatment on hydrophobic properties[J]. Applied Organometallic Chemistry, 2012, 35(3):e6118.
    [16]
    LU S C, LIU Q L, HAN R, et al. Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions[J]. Chemical Engineering Journal, 2021, 409:128194.
    [17]
    YIN T, MENG X, JIN L P, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305:110327.
    [18]
    YOON Y H, NELSON J H. Application of Gas Adsorption Kinetics-Ⅱ. A Theoretical Model for Respirator Cartridge Service Life and Its Practical Applications[J]. American Industrial Hygiene Association Journal, 1984, 45(8):517-524.
    [19]
    REZAKAZEMI M, SHIRAZIAN S. Lignin-chitosan blend for methylene blue removal:adsorption modeling[J]. Journal of Molecular Liquids, 2019, 274:778-791.
    [20]
    LEE S H, LEE D K, SHIN C H, et al. Synthesis, characterization, and catalytic properties of zeolites IM-5 and NU-88[J]. Journal of Catalysis, 2003, 215(1):151-170.
    [21]
    LI X G, YUAN J J, DU J Z, et al. Functionalized ordered mesoporous silica by vinyltriethoxysilane for the removal of volatile organic compounds through adsorption/desorption process[J]. Industrial & Engineering Chemistry Research, 2020, 59(8):3511-3520.
    [22]
    GAI S L, YANG P P, LI C X, et al. Synthesis of magnetic, up-conversion luminescent and mesoporous core-shell-structured nanocomposites as drug carriers[J]. Advanced Functional Materials, 2010, 20(7):1166-1172.
    [23]
    MATTOGNO G, RIGHINI G, MONTESPERELLI G, et al. XPS analysis of the interface of ceramic thin films for humidity sensors[J]. Applied Surface Science, 1993, 70(Part-1):363-366.
    [24]
    SONG W, LIU Z, LIU L P, et al. A solvent evaporation route towards fabrication of hierarchically porous ZSM-11 with highly accessible mesopores[J]. RSC Advances, 2015, 5(39):31195-31204.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (217) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return