Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Xinwen, WANG Rongzhen, FENG Chengye, ZHANG Wenzhi, XU Zhenghe. RAPID START-UP AND STABILITY OF PARTIAL NITRIFICATION FOR DOMESTIC SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 9-14. doi: 10.13205/j.hjgc.202210002
Citation: MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016

EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS

doi: 10.13205/j.hjgc.202302016
  • Received Date: 2021-11-26
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Biochar, modified through acidification, alkalization or organification method, has been widely applied as an adsorbent for heavy metal immobilization. However, there is still a lack of information about the modification methods for improving the adsorption ability of biochar made from different raw materials. In addition, as a soil amendment, the influences and mechanisms of modified biochar in improving soil physico-chemical properties and stabilizing soil Pb and Cd also need further exploration. In this study, rice straw, sawdust and coconut shell were selected as the raw materials for the preparation of biochar. After modification by nitric acid and potassium permanganate, the surface characteristics of modified biochar such as specific surface area, pore structure and surface functional groups were measured. After then, the modified biochar was added into the tested soil (1000 mg/kg Pb, 10 mg/kg Cd) with a mass ratio of 2.5%, 5% and 10% respectively for 6 months of indoor immobilization test. Soil physico-chemical properties, speciation distribution of soil Pb and Cd and the relevant immobilization efficiency were measured at the end of the experiment. The results showed that, after modification, the specific surface area, micropore and oxygen-containing functional groups of different biochar were increased to varying degrees, which effectively enhanced the adsorption ability of biochar, especially for the modified coconut shell biochar. When the dosage of modified biochar was larger than 5%, the soil cation exchange capacity and organic matter content were observed increased by 15.89 g/kg and 5.28 cmol/kg respectively, which improved the fixation of soil nutrients and heavy metals. The modified biochar-soil system mainly promoted the transformation of soil available Pb and Cd to their potential activated and residual forms through ion exchange, complexation reaction and co-precipitation reaction. The degree of transformation was positively correlated with the immobilization time and dosage of modified biochar. Compared with Cd2+, Pb2+ in soil could be preferentially adsorbed and gradually reached adsorption equilibrium within 2 months due to the effect of competitive adsorption. The immobilization effect of modified coconut shell biochar on soil Pb and Cd was optimal with a dosage of 10%, and the highest immobilization rate was found as 59.72% and 36.37% respectively. In addition, continuous increases of soil cation exchange capacity and organic matter content were observed during the experiment, which might be caused by the "ageing effect" of biochar. Influenced by such effect, the bioavailability of Pb and Cd in soil kept decreasing and no secondary release of Pb2+ and Cd2+ were detected. In conclusion, the addition of modified biochar can improve soil structure, enhance soil fertility, and effectively stabilize soil Pb and Cd over a long time, and could be used in remediation of heavy metal contaminated soil.
  • [1]
    纪文贵, 王珂, 蒙建波, 等. 中国土壤重金属污染状况及其风险评价[J]. 农业研究与应用, 2020, 33(5):22-28.
    [2]
    牟珍珍, 孟宪刚, ISLAM R, 等. 生物炭与膨润土对镉吸附性能比较[J]. 环境工程, 2019, 37(11):92-97.
    [3]
    GONG H B, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil:applications and challenges[J]. Journal of Hazardous Materials, 2022, 432:128668.
    [4]
    GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite:a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105830.
    [5]
    HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar:mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252(Part A):846-855.
    [6]
    兰玉顺, 刘维娜, 王丹, 等. 施用典型有机固废生物炭对土壤重金属生物有效性的影响[J]. 环境工程学报, 2021, 15(8):2701-2710.
    [7]
    SUN D Z, LI F Y, JIN J W, et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829:154599.
    [8]
    付玉荣, 张衍福, 刘凯, 等. 生物炭对冬小麦土壤理化性质和产量的影响[J]. 济南大学学报(自然科学版), 2022, 36(1):38-44,55.
    [9]
    张美芝, 耿煜函, 张薇, 等. 秸秆生物炭在农田中的应用研究综述[J]. 中国农学通报, 2021, 37(21):59-65.
    [10]
    WANG H, SHAO D G, JI B, et al. Biochar effects on soil properties, water movement and irrigation water use efficiency of cultivated land in Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2022, 829:154520.
    [11]
    WANG S Y, KWAK J H, ISLAM M S, et al. Biochar surface complexation and Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) adsorption in aqueous solutions depend on feedstock type[J]. Science of the Total Environment, 2020, 712:136538.
    [12]
    魏忠平, 朱永乐, 赵楚峒, 等. 生物炭吸附重金属机理及其应用技术研究进展[J]. 土壤通报, 2020, 51(3):741-747.
    [13]
    GUO X J, WU Y, LI N X, et al. Effects on the complexation of heavy metals onto biochar-derived WEOM extracted from low-temperature pyrolysis[J]. Ecotoxicology and Environmental Safety, 2021, 221:112456.
    [14]
    HUANG M, LI Z W, LUO N L, et al. Application potential of biochar in environment:insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2018, 646:220-228.
    [15]
    张薇, 陈雪丽, 万书明, 等. 原料和制备条件对农用生物炭特性影响的研究进展[J]. 黑龙江农业科学, 2021(12):107-113.
    [16]
    XING Y H, LUO X S, LIU S, et al. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater[J]. Journal of Cleaner Production, 2021, 311:127514.
    [17]
    计海洋,汪玉瑛,刘玉学,等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报,2018, 32(11):2281-2287.
    [18]
    YAKOUT S, DAIFULLAH A, EL-REEFY S. Pore structure characterization of chemically modified biochar derived from rice straw[J]. Environmental Engineering and Management Journal, 2015, 14:473-480.
    [19]
    GÜZEL F, SAYǦILI H, SAYǦILI G A, et al. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution[J]. Journal of Cleaner Production, 2017, 144:260-265.
    [20]
    HUFF M D, KUMAR S, LEE J W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis[J]. Journal of Environmental Management, 2014, 146:303-308.
    [21]
    DING Z H, HU X, WAN Y S, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar:batch and column tests[J]. Journal of Industrial & Engineering Chemistry, 2016, 33:239-245.
    [22]
    LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181:281-288.
    [23]
    YAN L L, LIU Y, ZHANG Y D, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297:122381.
    [24]
    LIANG H X, DING W, ZHANG H W, et al. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(Ⅵ) from wastewater[J]. International Journal of Biological Macromolecules, 2022, 204:310-320.
    [25]
    刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148.
    [26]
    毛欣宇, 于怀志, 翟森茂, 等. 改性椰壳炭钝化修复农田土壤镉、铅的长期稳定化效果及生态风险评估研究[J]. 环境工程, 2022, 40(4):195-199.
    [27]
    鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
    [28]
    胡宁静, 骆永明, 宋静. 长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J]. 土壤学报, 2007, 44(3):437-443.
    [29]
    ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400:123289.
    [30]
    唐行灿, 陈金林. 生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学, 2018, 37(1):192-199.
    [31]
    许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1118.
    [32]
    ZHANG Q Z,DU Z L,LOU Y L,et al.A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions[J].Catena,2015, 127:26-31.
    [33]
    OLADELE S O, ADEYEMO A J, AWODUN M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J].Geoderma,2019, 336:1-11.
    [34]
    JIANG X Y, TAN X P, CHENG J, et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubation[J]. Geoderma, 2019, 333:99-107.
    [35]
    王志朴, 热则耶, 张大旺, 等. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5):178-183.
    [36]
    ZHEN H Y, LI J, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263(Part A):114552.
    [37]
    KANG M W, YIBELTAL M, KIM Y H, et al. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments[J]. Science of the Total Environment, 2022, 836:155746.
    [38]
    GAO L, LI Z H, YI W M, et al. Quantitative contribution of minerals and organics in biochar to Pb(Ⅱ) adsorption:considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325:129328.
    [39]
    WANG G H, PENG C, TARIQ M, et al. Mechanistic insight and bifunctional study of a sulfide Fe3O4 coated biochar composite for efficient As(Ⅲ) and Pb(Ⅱ) immobilization in soils[J]. Environmental Pollution, 2022, 293:118587.
    [40]
    UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (Cu Ⅱ, Cd Ⅱ, Ni Ⅱ, and Pb Ⅱ) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural & Food Chemistry, 2010, 58(9):5538-5544.
    [41]
    YANG G D, TANG L, ZENG G M, et al. Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon[J]. Chemical Engineering Journal, 2015, 259:854-864.
    [42]
    CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
    [43]
    XU X Y, CAO X D, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J]. Chemosphere, 2013, 92(8):955-961.
    [44]
    LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
    [45]
    CUI X Q, HAO H L, ZHANG C K, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment, 2016, 539:566-575.
    [46]
    汪怡, 李莉, 宋豆豆, 等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[J]. 农业环境科学学报, 2020, 39(6):1303-1313.
    [47]
    许端平, 姜紫微, 张朕. 磁性生物炭对铅和镉离子的竞争吸附动力学[J]. 安徽农业科学, 2020, 48(22):67-72.
    [48]
    LI Q N, LIANG W Y, LIU F, et al. Simultaneous immobilization of arsenic, lead and cadmium by magnesium-aluminum modified biochar in mining soil[J]. Journal of Environmental Management, 2022, 310:114792.
    [49]
    YANG T T, XU Y M, HUANG Q Q, et al. An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils[J]. Environmental Pollution, 2021, 291:118129.
    [50]
    JI X W, WAN J, WANG X D, et al. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system:effects and mechanisms[J]. Science of the Total Environment, 2022, 811:152112.
    [51]
    QIAN W, LIANG Y J, ZHANG W X, et al. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences, 2022, 113:231-241.
    [52]
    刘书畅, 黄应平, 熊彪, 等. 不同热解温度制备柚子皮生物炭对Pb(Ⅱ)的吸附机理[J]. 武汉大学学报(理学版), 2020, 66(4):361-368.
    [53]
    WAN J, ZENG G M, HUANG D L, et al. Rhamnolipid stabilized nano-chlorapatite:synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment[J]. Journal of Hazardous Materials, 2018,343:332-339.
    [54]
    KHANAM R, KUMAR A, NAYAK A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil:Bioavailability and potential risk to human health[J]. Science of the Total Environment, 2020, 699:134330.
    [55]
    陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4):2528-2534.
    [56]
    张学庆, 费宇红, 田夏, 等. 磷改性生物炭对Pb、Cd复合污染土壤的钝化效果[J]. 环境污染与防治, 2017, 39(9):1017-1020.
    [57]
    WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect:a review[J]. Ecotoxicology and Environmental Safety, 2021, 207:111261.
  • Relative Articles

    [1]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [2]XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027
    [3]ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021
    [4]YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017
    [5]FENG Haixia, ZHANG Xiaolei, ZHANG Tong, GAN Ruiqi, WANG Hongjie, LI Ji. PREPARATION OF METAL MODIFIED BIOCHAR FOR PHOSPHORUS REMOVAL BY ADSORPTION AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 131-141. doi: 10.13205/j.hjgc.202312016
    [6]LI Zhijian, WEI Li, NI Heng. RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031
    [7]LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018
    [8]HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016
    [9]MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020
    [10]LIU Ya, CHEN Jin-quan, YANG Zi-yue, JIN Shi-bo, FU Dong-tang, SHEN Shi-li. GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 184-189,195. doi: 10.13205/j.hjgc.202105026
    [11]PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003
    [12]JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027
    [13]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [14]ZHANG Xiang-lu, LIU You-yan, LU Yu-hao, TANG Ai-xing. EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024
    [15]SU Chang, LI Ying-fen, YAN Xing, CHONG Yun-xiao. DIVERSITY OF IRON MINERALS AND THEIR ADSORPTION TO Cd IN FERROUS OXIDATION AND DENITRIFICATION BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 76-83. doi: 10.13205/j.hjgc.202005014
    [16]CAO Xin, WEI Qun, SU Yuan, LIAO Yun-sheng, JIN Li. PHYSIOLOGICAL RESPONSE OF CHLORELLA PYRENOIDOSA BIOFILM TO CADMIUM STRESS AND ITS REMOVAL EFFECT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 77-80,127. doi: 10.13205/j.hjgc.202002010
    [17]LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032
    [18]ZHOU Li-jun, LIN Xiao-bing, WU Lin, HUANG Qian-ru, YU Ying, ZHANG Hong-yan, GUO Nai-jia, ZHANG Yun, LIU Hui. DIFFERENCES ANALYSIS ON PHYSICOCHEMICAL PROPERTITES,MICROBIAL AND ENZYME ACTIVITIES OF CADMIUM CONTAMINATED PADDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 202-206,227. doi: 10.13205/j.hjgc.202010032
    [19]Jia Dongjing, Guo Xinchao, Sun Changshun, . STUDY ON DIALYSIS OF YAM DIOSGENIN HYDROLYTIC WASTEWATER IN HOMOGENEOUS ION EXCHANGE MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 23-26. doi: 10.13205/j.hjgc.201501006
    [20]Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022
  • Cited by

    Periodical cited type(12)

    1. 张仕骏,包明哲,张子晨,王晓斌,王晨骁,来雪慧. 不同生物炭对土壤镉形态及小白菜吸收镉的影响. 山西化工. 2024(05): 208-210+219 .
    2. 白雪,叶丽红,马岚,张铁坚,刘俊良. 污泥生物炭对土壤养分及重金属的影响. 应用化工. 2024(05): 1098-1103+1108 .
    3. 胡静姝,周新萍. 生物炭和鸡粪改良剂对铅胁迫下番茄生理生化、铅吸收及土壤性质的影响. 江苏农业科学. 2024(09): 181-188 .
    4. 唐晓勇,张长波,曹卫承,马晓宇,余锦涛,杨桂兰. 基于加速碳化的农田土壤重金属钝化长期稳定性评估. 肥料与健康. 2024(04): 17-25 .
    5. 李志娟,贺文星,张来星,刘铮,孙丹,徐淑霞. γ-聚谷氨酸改性生物炭对镉污染土壤的修复作用. 河南农业科学. 2024(08): 70-78 .
    6. 陈来仪,李晓军,王一,侯伟,巩宗强,贾春云. 冻融过程对铁磁性生物炭同步稳定化土壤镉砷效果的影响. 生态学杂志. 2024(10): 3095-3103 .
    7. 黄瑞卿,李伟,熊健,杨崛园,谢鹏程,吕学斌. 金属改性农林固废基生物质炭对镉污染土壤修复的研究进展. 生态与农村环境学报. 2024(11): 1438-1453 .
    8. 徐奕,蒋旭,徐应明. 施用硝酸钾和磷酸二氢钾对土壤镉污染钝化修复效应影响. 环境工程. 2024(12): 229-236 . 本站查看
    9. 余冰星,胡宗泉,王海玲,冯长江,孙中学. 镁基生物炭对污染土壤中氮磷持留性及铜稳定化处理的影响. 南京工业大学学报(自然科学版). 2024(06): 696-702 .
    10. 孙煜璨,方明智,张冰,刘翼飞,杨婷,陈坦. 水铁矿-人工合成类腐植酸复合材料的土壤重金属钝化效果及机制. 农业环境科学学报. 2023(08): 1710-1720 .
    11. 刘慧,孙秀兰. 生物炭对土壤镉的固化效果及韭菜生长的影响. 中国瓜菜. 2023(12): 113-119 .
    12. 张鲁民,杨焕文,何建忠,龙云生,周磊,吕亚媚,吕凯,徐照丽,欧阳铖人. 红壤条件下不同土壤改良剂对土壤氮供应和烟株抗病性的影响. 江西农业学报. 2023(10): 80-86 .

    Other cited types(17)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.4 %FULLTEXT: 8.4 %META: 87.1 %META: 87.1 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.7 %其他: 14.7 %上海: 3.0 %上海: 3.0 %东莞: 3.9 %东莞: 3.9 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 1.2 %兰州: 1.2 %北京: 5.7 %北京: 5.7 %南京: 3.9 %南京: 3.9 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %南阳: 0.3 %南阳: 0.3 %厦门: 0.3 %厦门: 0.3 %台州: 1.2 %台州: 1.2 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.9 %呼和浩特: 0.9 %哈尔滨: 0.9 %哈尔滨: 0.9 %圣克拉拉: 0.3 %圣克拉拉: 0.3 %大同: 0.3 %大同: 0.3 %天津: 0.6 %天津: 0.6 %安庆: 0.3 %安庆: 0.3 %安康: 0.3 %安康: 0.3 %宜昌: 0.3 %宜昌: 0.3 %常德: 1.2 %常德: 1.2 %广州: 1.5 %广州: 1.5 %开封: 0.9 %开封: 0.9 %张家口: 0.9 %张家口: 0.9 %成都: 1.5 %成都: 1.5 %扬州: 0.6 %扬州: 0.6 %揭阳: 0.3 %揭阳: 0.3 %新乡: 0.6 %新乡: 0.6 %昆明: 1.8 %昆明: 1.8 %晋城: 0.6 %晋城: 0.6 %杭州: 1.2 %杭州: 1.2 %武汉: 0.6 %武汉: 0.6 %汕头: 0.6 %汕头: 0.6 %沈阳: 2.1 %沈阳: 2.1 %泰州: 0.9 %泰州: 0.9 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %湛江: 0.3 %湛江: 0.3 %漯河: 0.9 %漯河: 0.9 %福州: 0.6 %福州: 0.6 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %菏泽: 0.3 %菏泽: 0.3 %衡阳: 0.3 %衡阳: 0.3 %衢州: 1.5 %衢州: 1.5 %西宁: 5.4 %西宁: 5.4 %西雅图: 0.9 %西雅图: 0.9 %贵阳: 1.5 %贵阳: 1.5 %运城: 1.5 %运城: 1.5 %遵义: 0.3 %遵义: 0.3 %郑州: 0.9 %郑州: 0.9 %重庆: 0.6 %重庆: 0.6 %铁岭: 1.5 %铁岭: 1.5 %银川: 0.3 %银川: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 1.8 %长沙: 1.8 %长治: 0.6 %长治: 0.6 %雅安: 0.3 %雅安: 0.3 %青岛: 0.3 %青岛: 0.3 %韶关: 0.6 %韶关: 0.6 %黄冈: 0.3 %黄冈: 0.3 %其他上海东莞临汾乌鲁木齐保定兰州北京南京南昌南通南阳厦门台州合肥呼和浩特哈尔滨圣克拉拉大同天津安庆安康宜昌常德广州开封张家口成都扬州揭阳新乡昆明晋城杭州武汉汕头沈阳泰州温州湖州湛江漯河福州芒廷维尤芝加哥苏州菏泽衡阳衢州西宁西雅图贵阳运城遵义郑州重庆铁岭银川长春长沙长治雅安青岛韶关黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (289) PDF downloads(15) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return