Citation: | MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016 |
[1] |
纪文贵, 王珂, 蒙建波, 等. 中国土壤重金属污染状况及其风险评价[J]. 农业研究与应用, 2020, 33(5):22-28.
|
[2] |
牟珍珍, 孟宪刚, ISLAM R, 等. 生物炭与膨润土对镉吸附性能比较[J]. 环境工程, 2019, 37(11):92-97.
|
[3] |
GONG H B, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil:applications and challenges[J]. Journal of Hazardous Materials, 2022, 432:128668.
|
[4] |
GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite:a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5):105830.
|
[5] |
HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar:mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252(Part A):846-855.
|
[6] |
兰玉顺, 刘维娜, 王丹, 等. 施用典型有机固废生物炭对土壤重金属生物有效性的影响[J]. 环境工程学报, 2021, 15(8):2701-2710.
|
[7] |
SUN D Z, LI F Y, JIN J W, et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(Ⅱ) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829:154599.
|
[8] |
付玉荣, 张衍福, 刘凯, 等. 生物炭对冬小麦土壤理化性质和产量的影响[J]. 济南大学学报(自然科学版), 2022, 36(1):38-44,55.
|
[9] |
张美芝, 耿煜函, 张薇, 等. 秸秆生物炭在农田中的应用研究综述[J]. 中国农学通报, 2021, 37(21):59-65.
|
[10] |
WANG H, SHAO D G, JI B, et al. Biochar effects on soil properties, water movement and irrigation water use efficiency of cultivated land in Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2022, 829:154520.
|
[11] |
WANG S Y, KWAK J H, ISLAM M S, et al. Biochar surface complexation and Ni(Ⅱ), Cu(Ⅱ), and Cd(Ⅱ) adsorption in aqueous solutions depend on feedstock type[J]. Science of the Total Environment, 2020, 712:136538.
|
[12] |
魏忠平, 朱永乐, 赵楚峒, 等. 生物炭吸附重金属机理及其应用技术研究进展[J]. 土壤通报, 2020, 51(3):741-747.
|
[13] |
GUO X J, WU Y, LI N X, et al. Effects on the complexation of heavy metals onto biochar-derived WEOM extracted from low-temperature pyrolysis[J]. Ecotoxicology and Environmental Safety, 2021, 221:112456.
|
[14] |
HUANG M, LI Z W, LUO N L, et al. Application potential of biochar in environment:insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of the Total Environment, 2018, 646:220-228.
|
[15] |
张薇, 陈雪丽, 万书明, 等. 原料和制备条件对农用生物炭特性影响的研究进展[J]. 黑龙江农业科学, 2021(12):107-113.
|
[16] |
XING Y H, LUO X S, LIU S, et al. A novel eco-friendly recycling of food waste for preparing biofilm-attached biochar to remove Cd and Pb in wastewater[J]. Journal of Cleaner Production, 2021, 311:127514.
|
[17] |
计海洋,汪玉瑛,刘玉学,等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报,2018, 32(11):2281-2287.
|
[18] |
YAKOUT S, DAIFULLAH A, EL-REEFY S. Pore structure characterization of chemically modified biochar derived from rice straw[J]. Environmental Engineering and Management Journal, 2015, 14:473-480.
|
[19] |
GÜZEL F, SAYǦILI H, SAYǦILI G A, et al. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution[J]. Journal of Cleaner Production, 2017, 144:260-265.
|
[20] |
HUFF M D, KUMAR S, LEE J W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis[J]. Journal of Environmental Management, 2014, 146:303-308.
|
[21] |
DING Z H, HU X, WAN Y S, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar:batch and column tests[J]. Journal of Industrial & Engineering Chemistry, 2016, 33:239-245.
|
[22] |
LIANG J, YANG Z X, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 2017, 181:281-288.
|
[23] |
YAN L L, LIU Y, ZHANG Y D, et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2020, 297:122381.
|
[24] |
LIANG H X, DING W, ZHANG H W, et al. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr(Ⅵ) from wastewater[J]. International Journal of Biological Macromolecules, 2022, 204:310-320.
|
[25] |
刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4):1140-1148.
|
[26] |
毛欣宇, 于怀志, 翟森茂, 等. 改性椰壳炭钝化修复农田土壤镉、铅的长期稳定化效果及生态风险评估研究[J]. 环境工程, 2022, 40(4):195-199.
|
[27] |
鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2000.
|
[28] |
胡宁静, 骆永明, 宋静. 长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J]. 土壤学报, 2007, 44(3):437-443.
|
[29] |
ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400:123289.
|
[30] |
唐行灿, 陈金林. 生物炭对土壤理化和微生物性质影响研究进展[J]. 生态科学, 2018, 37(1):192-199.
|
[31] |
许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响[J]. 应用生态学报, 2019, 30(4):1110-1118.
|
[32] |
ZHANG Q Z,DU Z L,LOU Y L,et al.A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions[J].Catena,2015, 127:26-31.
|
[33] |
OLADELE S O, ADEYEMO A J, AWODUN M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J].Geoderma,2019, 336:1-11.
|
[34] |
JIANG X Y, TAN X P, CHENG J, et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubation[J]. Geoderma, 2019, 333:99-107.
|
[35] |
王志朴, 热则耶, 张大旺, 等. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5):178-183.
|
[36] |
ZHEN H Y, LI J, HUANG C D, et al. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production[J]. Environmental Pollution, 2020, 263(Part A):114552.
|
[37] |
KANG M W, YIBELTAL M, KIM Y H, et al. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments[J]. Science of the Total Environment, 2022, 836:155746.
|
[38] |
GAO L, LI Z H, YI W M, et al. Quantitative contribution of minerals and organics in biochar to Pb(Ⅱ) adsorption:considering the increase of oxygen-containing functional groups[J]. Journal of Cleaner Production, 2021, 325:129328.
|
[39] |
WANG G H, PENG C, TARIQ M, et al. Mechanistic insight and bifunctional study of a sulfide Fe3O4 coated biochar composite for efficient As(Ⅲ) and Pb(Ⅱ) immobilization in soils[J]. Environmental Pollution, 2022, 293:118587.
|
[40] |
UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (Cu Ⅱ, Cd Ⅱ, Ni Ⅱ, and Pb Ⅱ) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural & Food Chemistry, 2010, 58(9):5538-5544.
|
[41] |
YANG G D, TANG L, ZENG G M, et al. Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon[J]. Chemical Engineering Journal, 2015, 259:854-864.
|
[42] |
CAO X D, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291.
|
[43] |
XU X Y, CAO X D, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J]. Chemosphere, 2013, 92(8):955-961.
|
[44] |
LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3):854-862.
|
[45] |
CUI X Q, HAO H L, ZHANG C K, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment, 2016, 539:566-575.
|
[46] |
汪怡, 李莉, 宋豆豆, 等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[J]. 农业环境科学学报, 2020, 39(6):1303-1313.
|
[47] |
许端平, 姜紫微, 张朕. 磁性生物炭对铅和镉离子的竞争吸附动力学[J]. 安徽农业科学, 2020, 48(22):67-72.
|
[48] |
LI Q N, LIANG W Y, LIU F, et al. Simultaneous immobilization of arsenic, lead and cadmium by magnesium-aluminum modified biochar in mining soil[J]. Journal of Environmental Management, 2022, 310:114792.
|
[49] |
YANG T T, XU Y M, HUANG Q Q, et al. An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils[J]. Environmental Pollution, 2021, 291:118129.
|
[50] |
JI X W, WAN J, WANG X D, et al. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system:effects and mechanisms[J]. Science of the Total Environment, 2022, 811:152112.
|
[51] |
QIAN W, LIANG Y J, ZHANG W X, et al. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences, 2022, 113:231-241.
|
[52] |
刘书畅, 黄应平, 熊彪, 等. 不同热解温度制备柚子皮生物炭对Pb(Ⅱ)的吸附机理[J]. 武汉大学学报(理学版), 2020, 66(4):361-368.
|
[53] |
WAN J, ZENG G M, HUANG D L, et al. Rhamnolipid stabilized nano-chlorapatite:synthesis and enhancement effect on Pb-and Cd-immobilization in polluted sediment[J]. Journal of Hazardous Materials, 2018,343:332-339.
|
[54] |
KHANAM R, KUMAR A, NAYAK A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil:Bioavailability and potential risk to human health[J]. Science of the Total Environment, 2020, 699:134330.
|
[55] |
陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4):2528-2534.
|
[56] |
张学庆, 费宇红, 田夏, 等. 磷改性生物炭对Pb、Cd复合污染土壤的钝化效果[J]. 环境污染与防治, 2017, 39(9):1017-1020.
|
[57] |
WANG J, SHI L, ZHAI L L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect:a review[J]. Ecotoxicology and Environmental Safety, 2021, 207:111261.
|
[1] | LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018 |
[2] | XU Yi, JIANG Xu, XU Yingming. EFFECT OF ADDING KNO3 AND KH2PO4 ON IMMOBILIZATION REMEDIATION OF CADMIUM IN POLLUTED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 229-236. doi: 10.13205/j.hjgc.202412027 |
[3] | ZHOU Ziyan, HUANG Xiang, GU Jinchuan, XUE Jia, WU Yi, YONG Yi. PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 150-158. doi: 10.13205/j.hjgc.202307021 |
[4] | YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017 |
[5] | FENG Haixia, ZHANG Xiaolei, ZHANG Tong, GAN Ruiqi, WANG Hongjie, LI Ji. PREPARATION OF METAL MODIFIED BIOCHAR FOR PHOSPHORUS REMOVAL BY ADSORPTION AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 131-141. doi: 10.13205/j.hjgc.202312016 |
[6] | LI Zhijian, WEI Li, NI Heng. RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 206-213,224. doi: 10.13205/j.hjgc.202202031 |
[7] | LI Yalin, LI Peng, TANG Yifan, ZHANG Wei, WANG Enci, JIN Mingyu. IMPACT OF DC VOLTAGE ON ELECTRO-REMEDIATION OF Pb AND As CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 131-135,184. doi: 10.13205/j.hjgc.202208018 |
[8] | HUO Jiajia, LUO Shengxu, WANG Yanshi, WANG Xinwei, DENG Qin, LI Jinying. PASSIVATION OF LEAD IN SOIL BY FULVIC ACID-NANO-ZERO-VALENT IRON COMPLEX[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 112-120. doi: 10.13205/j.hjgc.202204016 |
[9] | MAO Xinyu, YU Huaizhi, ZHAI Senmao, JIANG Xiaosan, XU Zhou, WANG Qilin. LONG-TERM STABILIZATION EFFECT AND ECOLOGICAL RISK ASSESSMENT OF SOIL CADMIUM AND LEAD BY USING MODIFIED COCONUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 140-146. doi: 10.13205/j.hjgc.202204020 |
[10] | LIU Ya, CHEN Jin-quan, YANG Zi-yue, JIN Shi-bo, FU Dong-tang, SHEN Shi-li. GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 184-189,195. doi: 10.13205/j.hjgc.202105026 |
[11] | PENG Yan, CHEN Di-yun, CHEN Nan, ZENG Lin-wei. PASSIVATION EFFECT OF CALCIUM PHOSPHATE ON URANIUM IN SEDIMENTS IN DOWNSTREAM WATERS OF A URANIUM MINE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 13-19,24. doi: 10.13205/j.hjgc.202104003 |
[12] | JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027 |
[13] | LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030 |
[14] | ZHANG Xiang-lu, LIU You-yan, LU Yu-hao, TANG Ai-xing. EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024 |
[15] | SU Chang, LI Ying-fen, YAN Xing, CHONG Yun-xiao. DIVERSITY OF IRON MINERALS AND THEIR ADSORPTION TO Cd IN FERROUS OXIDATION AND DENITRIFICATION BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 76-83. doi: 10.13205/j.hjgc.202005014 |
[16] | CAO Xin, WEI Qun, SU Yuan, LIAO Yun-sheng, JIN Li. PHYSIOLOGICAL RESPONSE OF CHLORELLA PYRENOIDOSA BIOFILM TO CADMIUM STRESS AND ITS REMOVAL EFFECT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 77-80,127. doi: 10.13205/j.hjgc.202002010 |
[17] | LU Xiu-guo, WU Jin-jin, ZHENG Yu-jia. PASSIVATION OF CADMIUM IN SOIL BY WALNUT SHELL BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 196-202. doi: 10.13205/j.hjgc.202011032 |
[18] | ZHOU Li-jun, LIN Xiao-bing, WU Lin, HUANG Qian-ru, YU Ying, ZHANG Hong-yan, GUO Nai-jia, ZHANG Yun, LIU Hui. DIFFERENCES ANALYSIS ON PHYSICOCHEMICAL PROPERTITES,MICROBIAL AND ENZYME ACTIVITIES OF CADMIUM CONTAMINATED PADDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 202-206,227. doi: 10.13205/j.hjgc.202010032 |
[19] | Jia Dongjing, Guo Xinchao, Sun Changshun, . STUDY ON DIALYSIS OF YAM DIOSGENIN HYDROLYTIC WASTEWATER IN HOMOGENEOUS ION EXCHANGE MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 23-26. doi: 10.13205/j.hjgc.201501006 |
[20] | Cong Jing Yan Dahai Li Li Jiang Xuguang Zhou Yingnan He Jie Wang Qi, . CONDENSATION AND ABSORPTION KINETICS OF THE CEMENT RAW MEAL ON LEAD AND CADMIUM AT LOW-TEMPERATURES DURING CO-PROCESSING IN CEMENT KILNS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 103-107. doi: 10.13205/j.hjgc.201504022 |
1. | 张仕骏,包明哲,张子晨,王晓斌,王晨骁,来雪慧. 不同生物炭对土壤镉形态及小白菜吸收镉的影响. 山西化工. 2024(05): 208-210+219 . ![]() | |
2. | 白雪,叶丽红,马岚,张铁坚,刘俊良. 污泥生物炭对土壤养分及重金属的影响. 应用化工. 2024(05): 1098-1103+1108 . ![]() | |
3. | 胡静姝,周新萍. 生物炭和鸡粪改良剂对铅胁迫下番茄生理生化、铅吸收及土壤性质的影响. 江苏农业科学. 2024(09): 181-188 . ![]() | |
4. | 唐晓勇,张长波,曹卫承,马晓宇,余锦涛,杨桂兰. 基于加速碳化的农田土壤重金属钝化长期稳定性评估. 肥料与健康. 2024(04): 17-25 . ![]() | |
5. | 李志娟,贺文星,张来星,刘铮,孙丹,徐淑霞. γ-聚谷氨酸改性生物炭对镉污染土壤的修复作用. 河南农业科学. 2024(08): 70-78 . ![]() | |
6. | 陈来仪,李晓军,王一,侯伟,巩宗强,贾春云. 冻融过程对铁磁性生物炭同步稳定化土壤镉砷效果的影响. 生态学杂志. 2024(10): 3095-3103 . ![]() | |
7. | 黄瑞卿,李伟,熊健,杨崛园,谢鹏程,吕学斌. 金属改性农林固废基生物质炭对镉污染土壤修复的研究进展. 生态与农村环境学报. 2024(11): 1438-1453 . ![]() | |
8. | 徐奕,蒋旭,徐应明. 施用硝酸钾和磷酸二氢钾对土壤镉污染钝化修复效应影响. 环境工程. 2024(12): 229-236 . ![]() | |
9. | 余冰星,胡宗泉,王海玲,冯长江,孙中学. 镁基生物炭对污染土壤中氮磷持留性及铜稳定化处理的影响. 南京工业大学学报(自然科学版). 2024(06): 696-702 . ![]() | |
10. | 孙煜璨,方明智,张冰,刘翼飞,杨婷,陈坦. 水铁矿-人工合成类腐植酸复合材料的土壤重金属钝化效果及机制. 农业环境科学学报. 2023(08): 1710-1720 . ![]() | |
11. | 刘慧,孙秀兰. 生物炭对土壤镉的固化效果及韭菜生长的影响. 中国瓜菜. 2023(12): 113-119 . ![]() | |
12. | 张鲁民,杨焕文,何建忠,龙云生,周磊,吕亚媚,吕凯,徐照丽,欧阳铖人. 红壤条件下不同土壤改良剂对土壤氮供应和烟株抗病性的影响. 江西农业学报. 2023(10): 80-86 . ![]() |