Citation: | XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017 |
[1] |
NIU A Y, LIN C X. Managing soils of environmental significance:a critical review[J]. Journal of Hazardous Materials, 2021, 417(3):125990.
|
[2] |
LI J T, LIN F W, LI K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J]. Journal of Hazardous Materials, 2020, 406:124706.
|
[3] |
SALIMNEZHAD A, SOLTANI-JIGHEH H, SOORKI A A. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(3):653-670.
|
[4] |
BULAI I S, ADAMU H, UMAR Y A, SABO A. Biocatalytic remediation of used motor oil-contaminated soil by fruit garbage enzymes[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105465.
|
[5] |
SATTAR S, JEHAN S, SIDDIQUI S. Potentially toxic metals in the petroleum waste contaminated soils lead to human and ecological risks in Potwar and Kohat Plateau, Pakistan:application of multistatistical approaches[J]. Environmental Technology & Innovation, 2021:22:101375.
|
[6] |
TOMLINSON D W, RIVETT M O, WEALTHALL G P, et al. Understanding complex LNAPL sites:illustrated handbook of LNAPL transport and fate in the subsurface[J]. Journal of Environmental Management, 2017, 204(Part.2):748-756.
|
[7] |
LIU P F, YANG Z H,CHEN Y L, et al. Remediation of weathered diesel-oil contaminated soils using biopile systems:an amendment selection and pilot-scale study[J]. Science of the Total Environment, 2021, 786:147395.
|
[8] |
SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China:a critical review[J]. Science of the Total Environment, 2017, 615:724-740.
|
[9] |
FENG L Y, JIANG X P, HUANG Y N, et al. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid[J]. Environmental Pollution, 2021, 273:116476.
|
[10] |
SUN S, SU Y H, CHEN S Q, et al. Bioremediation of oil-contaminated soil:exploring the potential of endogenous hydrocarbon degrader Enterobacter sp. SAVR S-1[J]. Applied Soil Ecology,2022,173.
|
[11] |
SARANYA K, PALANISAMI T, KADIYALA V, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints, emerging trends and future directions[J]. Chemosphere,2017,168:944-968.
|
[12] |
徐金兰,王慧芳,王荣,等.温和预氧化提高后续生物修复石油污染土壤[J].环境科学,2019,40(11):5124-5132.
|
[13] |
LIU M H, HSIAO C M, WANG Y S, et al. Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil[J]. International Biodeterioration & Biodegradation, 2019, 143:104738.
|
[14] |
BOUZID I,PINOHERRERA D, DIERICK M, et al. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone[J]. Journal of Hazardous Materials, 2021, 401:123420.
|
[15] |
XU J L, DENG X, CUI Y W, et al. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil[J]. Journal of Hazardous Materials, 2016, 320:160-168.
|
[16] |
LIN T C, PAN P T, CHENG S S. Ex situ bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2009, 176(1/2/3):27-34.
|
[17] |
MARGESIN R, HÄMMERLE M, TSCHERKO D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil:effects of hydrocarbon concentration, fertilizers, and incubation time[J]. Microbial ecology, 2007, 53(2):259-269.
|
[18] |
MIAO Z W, GU X G, LU S G, et al. Mechanism of PCE oxidation by percarbonate in a chelated Fe(Ⅱ)-based catalyzed system[J]. Chemical Engineering Journal,2015,275:53-62.
|
[19] |
XU J L, FAN P Q, DONG Y L, et al. Oriented oxidation of all alkanes in soils[J]. Journal of Hazardous Materials, 2020, 399:123078.
|
[20] |
KIM I, LEE M. Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site[J]. Journal of Hazardous Materials, 2012, 241:173-181.
|
[21] |
NORA B S, TIM G, HUUB H R. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97:64-70.
|
[22] |
GONG X B. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70:89-95.
|
[23] |
关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986.
|
[24] |
VARJANI S, UPASANI V N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil[J]. Journal of Environmental Management, 2019, 245(9):358-366.
|
[25] |
SAMPAIO C, SOUZA J, CARVALHO G, et al. Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida):implications for NPK fertilizer supplementation[J]. Journal of Environmental Management, 2019, 246:617-624.
|
[26] |
CHEN W W, LI J D, SUN X N, et al. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3[J]. International Biodeterioration & Biodegradation, 2017, 118:110-118.
|
[27] |
EDWARDS C A. Soil microbiology and biochemistry[J]. The Quarterly Review of Biology, 1990, 65(2).
|
[28] |
SUN Y Y, CHEN W W, WANG Y B, et al. Nutrient depletion is the main limiting factor in the crude oil bioaugmentation process[J]. Journal of Environmental Sciences, 2021,100(2):11:317-327.
|
[29] |
WU M L, YE X Q, CHEN K L, et al. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil[J]. Environmental Pollution, 2017, 223:657-664.
|
[30] |
MARGESIN R, ZIMMERBAUER A, SCHINNER F. Monitoring of bioremediation by soil biological activities[J]. Chemosphere.2000, 40(4):339-346.
|
[31] |
常学秀,文传浩,沈其荣,等.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J].生态学杂志, 2001,20(4):5-8.
|
[32] |
GIANFREDA L, RAO M A, PIOTROWSKA A, et al. Soil enzyme activities as affected by anthropogenic alterations:intensive agricultural practices and organic pollution[J]. Science of the Total Environment, 2005, 341(1/2/3):265-279.
|
[33] |
LACAYO-ROMERO M, BAVEL B V, BO M. Degradation of toxaphene in aged and freshly contaminated soil[J]. Chemosphere, 2006, 63(4):609-615.
|
[34] |
ZHEN L S, HU T, LV R, et al. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation[J]. Journal of Hazardous Materials, 2020, 410:124869.
|
[1] | SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019 |
[2] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[3] | PU Yitao, YANG Ruyue, XU Yirong, KE Shuizhou, WANG Xiaodong, GAO Jingsi, XIAO Kang. RESEARCH PROGRESS ON EFFECTS OF MICROPLASTICS ON EXCESS SLUDGE AND THEIR DEGRADATION PATHWAYS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 48-56. doi: 10.13205/j.hjgc.202402006 |
[4] | QIU Fuguo, LIANG Anqi, TONG Shiyu, WANG Chun. INVESTIGATION OF OCCURRENCE REGULARITY OF MICROPLASTICS IN RAINWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 106-112. doi: 10.13205/j.hjgc.202407011 |
[5] | YU Hong, SHI Lingling. EFFECTS OF MICROPLASTICS ON MICROBIAL COMMUNITIES AND FUNCTIONAL GENES IN SOIL WITH DIFFERENT AGGREGATE-FRACTION LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 167-174. doi: 10.13205/j.hjgc.202402020 |
[6] | LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018 |
[7] | HUANG Xi, ZHANG Qiaoqiao, YAN Jin, MA Jingjing, LUO Zejiao. POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 136-145. doi: 10.13205/j.hjgc.202406016 |
[8] | LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006 |
[9] | ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012 |
[10] | LI Yan-xue, ZHANG Meng-zhu, SHU Sha-sha, ZOU Jun-han, JIAO Wei, ZHOU Jun-yu. QUANTITATIVE IDENTIFICATION OF ANTHROPOGENIC HEAVY METAL SOURCES IN FARMLAND SOIL BASED ON ENRICHMENT FACTOR AND MLR-APCS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 173-177,232. doi: 10.13205/j.hjgc.202209023 |
[11] | LIU Chao, ZHANG Xiao-ran, LIU Jun-feng, ZHANG Zi-yang, GONG Yong-wei, LI Hai-yan. RELEASE OF MICROPLASTICS FROM PLASTIC PRODUCTS AND THEIR ENVIRONMENTAL TRANSPORT BEHAVIORS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 205-217. doi: 10.13205/j.hjgc.202205030 |
[12] | QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032 |
[13] | LUO Xiao-feng, ZHU Ling-long, XU Guo-liang, YU Shi-qin, OU Shi-ting, CHEN Xiao-hua. TOXICITY OF SUBMICROPLASTIC ON SOIL COLLEMBOLANS FOLSOMIA CANDIDA BY FOOD EXPOSURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 187-193. doi: 10.13205/j.hjgc.202101029 |
[14] | DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027 |
[15] | LIANG Shuai, HAN Bing, NIU Ze-pu, ZHAO Ling-dong, GU Jin-yi, WANG Wan-wan, ZHANG Li-feng, ZHANG Yang. SOURCE, MIGRATION AND ECOTOXICOLOGICAL EFFECTS OF MICRO-PLASTICS IN FRESHWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 1-9,70. doi: 10.13205/j.hjgc.202112001 |
[16] | LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007 |
[17] | HOU Jun-hua, TAN Wen-bing, YU Hong, DANG Qiu-ling, LI Ren-fei, XI Bei-dou. MICROPLASTICS IN SOIL ECOSYSTEM: A REVIEW ON SOURCES, FATE, AND ECOLOGICAL IMPACT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002 |
1. | 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 . ![]() | |
2. | 游洋洋,张涛,梁增强,霍宁. 我国农田土壤中微塑料污染研究进展与环境管理现状. 环境生态学. 2024(02): 101-106 . ![]() | |
3. | 朱晓艳,王琪琛,姜懿真,武忠,柳钟惠,陈吉孝,王钰琳,袁宇翔. 微塑料对稻田土壤-水界面重金属分布及迁移的影响. 水生态学杂志. 2024(03): 10-20 . ![]() | |
4. | 温浩军,陈学庚,陈浩,缑海啸. 农田地膜回收机械应用现状与发展. 农业环境科学学报. 2024(06): 1271-1277 . ![]() | |
5. | 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . ![]() | |
6. | 熊新港,殷伟庆,常铖炜,王超,林华星,赵文青,李冠霖,解清杰. 农田土壤微塑料的检测及环境行为研究进展. 土壤通报. 2024(03): 886-900 . ![]() | |
7. | 杨文硕,梁鑫,王旭刚,石兆勇,杜鹃. 微塑料对土壤理化性质和生物特性的影响及其降解研究进展. 江苏农业科学. 2024(16): 20-29 . ![]() | |
8. | 路浩东,赵少婷,张俊丽,王蕊,贾汉忠,代允超. 不同类型地膜降解规律及其对土壤理化性质的影响. 农业资源与环境学报. 2024(05): 1171-1181 . ![]() | |
9. | 张茵,侯建平. 试论生态环境保护视域下农业生产用地土壤中塑料微粒污染问题. 中国农业综合开发. 2024(10): 40-45 . ![]() | |
10. | 张蕾,孙东,张建强,朱艳宏,陆一新,李经涵,何杨. 农膜微塑料与酞酸酯在土壤中迁移的研究进展. 土壤. 2024(05): 938-947 . ![]() | |
11. | 姜晓旭,封雪,周笑白,袁广旺,李宗超,郑明辉,李名升. 土壤中微塑料污染现状与检测技术研究进展. 环境化学. 2023(01): 163-175 . ![]() | |
12. | 邓爱琴,赵保卫,朱正钰,段凯祥,张鑫,索进苗,杨茂莺,杨佳妮. 土壤中微塑料的来源与其生态毒理效应研究进展. 环境化学. 2023(02): 345-357 . ![]() | |
13. | 仲子文,李冰,李彦,李德伟,刘延美,颜晓,刘宾绪,刘兆东,王艳芹,孙斌,薄录吉. 我国农田土壤微塑料和重金属污染现状与研究展望. 山东农业科学. 2023(02): 165-172 . ![]() | |
14. | 史增录,张学军,程金鹏,周鑫城,张朝书. 垂直双排链式残膜回收机输膜卸膜装置设计与试验. 干旱地区农业研究. 2023(03): 257-265 . ![]() | |
15. | 陈方涛,刘振鹏,金荣荣,吕军. 浅议潍坊市农村生态环境污染成因及治理经验. 南方农业. 2023(07): 90-92+100 . ![]() | |
16. | 刘明宇,郑旭,强丽媛,李鲁华,张若宇,王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析. 生态环境学报. 2023(11): 2050-2061 . ![]() | |
17. | 臧宇飞,李一凡,吴金柱,徐保建,陈飞勇,王静,邵媛媛,宋扬,王全勇,张瑞娜,刘兵. 城镇有机垃圾热解工艺研究进展. 当代化工. 2022(04): 928-935 . ![]() | |
18. | 张琳,王斯腾,马丽新. 一次性聚丙烯餐盒中汞、砷迁移量分析研究. 环境科技. 2022(03): 69-72 . ![]() | |
19. | 贾涛,薛颖昊,靳拓,鲁天宇. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展. 生态毒理学报. 2022(05): 202-216 . ![]() |