Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
Citation: XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017

IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION

doi: 10.13205/j.hjgc.202302017
  • Received Date: 2022-03-06
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • To obtain a remediation method of Fenton pre-oxidation combined with bioremediation of oil-contaminated soil for efficient degradation of petroleum hydrocarbons (TPH), the characteristics of hydroxyl radical (·OH), NH+4-N concentration, DOC concentration, dehydrogenase and polyphenol oxidase activities and TPH removal with dosing different concentration of H2O2 by three batches were investigated in this study. The results showed that the maximum instantaneous intensity and duration of ·OH were low, the bacteria destruction was low and TPH oxidation was high after pre-oxidation with 900 mmol/L H2O2 (4.635 mL) by three batches dosing. The NH+4-N consumption (170.45 mg/kg) was high and the quantity of hydrocarbon-degrading microorganisms increased rapidly, then long-chain alkanes C21 to C30 (22%) and DOC (69%) degradation were high at the first 20 days in bio-remediation. Therefore, hydrocarbon degraders were induced to degrade long-alkane (42%) in 0 to 50 days by sufficient NH+4-N concentration consumption in the early bio-remediation stage. The activities of dehydrogenase and polyphenol oxidase reached a peak on the 20th day, indicating that the metabolic activity of microorganisms increased, and petroleum hydrocarbon degradation mainly occurred in this period.
  • [1]
    NIU A Y, LIN C X. Managing soils of environmental significance:a critical review[J]. Journal of Hazardous Materials, 2021, 417(3):125990.
    [2]
    LI J T, LIN F W, LI K, et al. A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J]. Journal of Hazardous Materials, 2020, 406:124706.
    [3]
    SALIMNEZHAD A, SOLTANI-JIGHEH H, SOORKI A A. Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(3):653-670.
    [4]
    BULAI I S, ADAMU H, UMAR Y A, SABO A. Biocatalytic remediation of used motor oil-contaminated soil by fruit garbage enzymes[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105465.
    [5]
    SATTAR S, JEHAN S, SIDDIQUI S. Potentially toxic metals in the petroleum waste contaminated soils lead to human and ecological risks in Potwar and Kohat Plateau, Pakistan:application of multistatistical approaches[J]. Environmental Technology & Innovation, 2021:22:101375.
    [6]
    TOMLINSON D W, RIVETT M O, WEALTHALL G P, et al. Understanding complex LNAPL sites:illustrated handbook of LNAPL transport and fate in the subsurface[J]. Journal of Environmental Management, 2017, 204(Part.2):748-756.
    [7]
    LIU P F, YANG Z H,CHEN Y L, et al. Remediation of weathered diesel-oil contaminated soils using biopile systems:an amendment selection and pilot-scale study[J]. Science of the Total Environment, 2021, 786:147395.
    [8]
    SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China:a critical review[J]. Science of the Total Environment, 2017, 615:724-740.
    [9]
    FENG L Y, JIANG X P, HUANG Y N, et al. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid[J]. Environmental Pollution, 2021, 273:116476.
    [10]
    SUN S, SU Y H, CHEN S Q, et al. Bioremediation of oil-contaminated soil:exploring the potential of endogenous hydrocarbon degrader Enterobacter sp. SAVR S-1[J]. Applied Soil Ecology,2022,173.
    [11]
    SARANYA K, PALANISAMI T, KADIYALA V, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints, emerging trends and future directions[J]. Chemosphere,2017,168:944-968.
    [12]
    徐金兰,王慧芳,王荣,等.温和预氧化提高后续生物修复石油污染土壤[J].环境科学,2019,40(11):5124-5132.
    [13]
    LIU M H, HSIAO C M, WANG Y S, et al. Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil[J]. International Biodeterioration & Biodegradation, 2019, 143:104738.
    [14]
    BOUZID I,PINOHERRERA D, DIERICK M, et al. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone[J]. Journal of Hazardous Materials, 2021, 401:123420.
    [15]
    XU J L, DENG X, CUI Y W, et al. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil[J]. Journal of Hazardous Materials, 2016, 320:160-168.
    [16]
    LIN T C, PAN P T, CHENG S S. Ex situ bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2009, 176(1/2/3):27-34.
    [17]
    MARGESIN R, HÄMMERLE M, TSCHERKO D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil:effects of hydrocarbon concentration, fertilizers, and incubation time[J]. Microbial ecology, 2007, 53(2):259-269.
    [18]
    MIAO Z W, GU X G, LU S G, et al. Mechanism of PCE oxidation by percarbonate in a chelated Fe(Ⅱ)-based catalyzed system[J]. Chemical Engineering Journal,2015,275:53-62.
    [19]
    XU J L, FAN P Q, DONG Y L, et al. Oriented oxidation of all alkanes in soils[J]. Journal of Hazardous Materials, 2020, 399:123078.
    [20]
    KIM I, LEE M. Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site[J]. Journal of Hazardous Materials, 2012, 241:173-181.
    [21]
    NORA B S, TIM G, HUUB H R. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil[J]. Chemosphere, 2014, 97:64-70.
    [22]
    GONG X B. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified Fenton oxidation[J]. International Biodeterioration & Biodegradation, 2012, 70:89-95.
    [23]
    关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986.
    [24]
    VARJANI S, UPASANI V N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil[J]. Journal of Environmental Management, 2019, 245(9):358-366.
    [25]
    SAMPAIO C, SOUZA J, CARVALHO G, et al. Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida):implications for NPK fertilizer supplementation[J]. Journal of Environmental Management, 2019, 246:617-624.
    [26]
    CHEN W W, LI J D, SUN X N, et al. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3[J]. International Biodeterioration & Biodegradation, 2017, 118:110-118.
    [27]
    EDWARDS C A. Soil microbiology and biochemistry[J]. The Quarterly Review of Biology, 1990, 65(2).
    [28]
    SUN Y Y, CHEN W W, WANG Y B, et al. Nutrient depletion is the main limiting factor in the crude oil bioaugmentation process[J]. Journal of Environmental Sciences, 2021,100(2):11:317-327.
    [29]
    WU M L, YE X Q, CHEN K L, et al. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil[J]. Environmental Pollution, 2017, 223:657-664.
    [30]
    MARGESIN R, ZIMMERBAUER A, SCHINNER F. Monitoring of bioremediation by soil biological activities[J]. Chemosphere.2000, 40(4):339-346.
    [31]
    常学秀,文传浩,沈其荣,等.锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J].生态学杂志, 2001,20(4):5-8.
    [32]
    GIANFREDA L, RAO M A, PIOTROWSKA A, et al. Soil enzyme activities as affected by anthropogenic alterations:intensive agricultural practices and organic pollution[J]. Science of the Total Environment, 2005, 341(1/2/3):265-279.
    [33]
    LACAYO-ROMERO M, BAVEL B V, BO M. Degradation of toxaphene in aged and freshly contaminated soil[J]. Chemosphere, 2006, 63(4):609-615.
    [34]
    ZHEN L S, HU T, LV R, et al. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation[J]. Journal of Hazardous Materials, 2020, 410:124869.
  • Relative Articles

    [1]SONG Lusheng, SUN Zhenzhou, HU Jing, DENG Qinghai. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF HEAVY METALS IN AN ABANDONED IRON ORE AND DOWNSTREAM FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 155-164. doi: 10.13205/j.hjgc.202410019
    [2]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [3]PU Yitao, YANG Ruyue, XU Yirong, KE Shuizhou, WANG Xiaodong, GAO Jingsi, XIAO Kang. RESEARCH PROGRESS ON EFFECTS OF MICROPLASTICS ON EXCESS SLUDGE AND THEIR DEGRADATION PATHWAYS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 48-56. doi: 10.13205/j.hjgc.202402006
    [4]QIU Fuguo, LIANG Anqi, TONG Shiyu, WANG Chun. INVESTIGATION OF OCCURRENCE REGULARITY OF MICROPLASTICS IN RAINWATER RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 106-112. doi: 10.13205/j.hjgc.202407011
    [5]YU Hong, SHI Lingling. EFFECTS OF MICROPLASTICS ON MICROBIAL COMMUNITIES AND FUNCTIONAL GENES IN SOIL WITH DIFFERENT AGGREGATE-FRACTION LEVELS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 167-174. doi: 10.13205/j.hjgc.202402020
    [6]LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
    [7]HUANG Xi, ZHANG Qiaoqiao, YAN Jin, MA Jingjing, LUO Zejiao. POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 136-145. doi: 10.13205/j.hjgc.202406016
    [8]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [9]ZHEN Zhaogan, SU Yang, LUO Junxiao, AN Tong, CHEN Yao, GOU Min. EFFECTS OF POLYETHYLENE MICROPLASTICS ON MESOPHILIC AND THERMOPHILIC ANAEROBIC DIGESTION OF SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 86-91,130. doi: 10.13205/j.hjgc.202304012
    [10]LI Yan-xue, ZHANG Meng-zhu, SHU Sha-sha, ZOU Jun-han, JIAO Wei, ZHOU Jun-yu. QUANTITATIVE IDENTIFICATION OF ANTHROPOGENIC HEAVY METAL SOURCES IN FARMLAND SOIL BASED ON ENRICHMENT FACTOR AND MLR-APCS MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 173-177,232. doi: 10.13205/j.hjgc.202209023
    [11]LIU Chao, ZHANG Xiao-ran, LIU Jun-feng, ZHANG Zi-yang, GONG Yong-wei, LI Hai-yan. RELEASE OF MICROPLASTICS FROM PLASTIC PRODUCTS AND THEIR ENVIRONMENTAL TRANSPORT BEHAVIORS: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 205-217. doi: 10.13205/j.hjgc.202205030
    [12]QIU Fuguo, TONG Shiyu, WANG Xiaoqian. RESEARCH PROGRESS ON OCCURRENCE STATUS AND ECOLOGICAL HAZARDS OF MICROPLASTICS IN WATER ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 221-228. doi: 10.13205/j.hjgc.202203032
    [13]LUO Xiao-feng, ZHU Ling-long, XU Guo-liang, YU Shi-qin, OU Shi-ting, CHEN Xiao-hua. TOXICITY OF SUBMICROPLASTIC ON SOIL COLLEMBOLANS FOLSOMIA CANDIDA BY FOOD EXPOSURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 187-193. doi: 10.13205/j.hjgc.202101029
    [14]DOU Wei-qiang, AN Yi, QIN Li, LIN Da-song, DONG Ming-ming. CHARACTERISTICS OF VERTICAL DISTRIBUTION AND MIGRATION OF HEAVY METALS IN FARMLAND SOILS AND ECOLOGICAL RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 166-172. doi: 10.13205/j.hjgc.202102027
    [15]LIANG Shuai, HAN Bing, NIU Ze-pu, ZHAO Ling-dong, GU Jin-yi, WANG Wan-wan, ZHANG Li-feng, ZHANG Yang. SOURCE, MIGRATION AND ECOTOXICOLOGICAL EFFECTS OF MICRO-PLASTICS IN FRESHWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 1-9,70. doi: 10.13205/j.hjgc.202112001
    [16]LIU Peng-xiao, WANG Xu, FENG Ling. OCCURRENCES, RESOURCES AND RISK OF ANTIBIOTICS IN AQUATIC ENVIRONMENT: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 36-42. doi: 10.13205/j.hjgc.202005007
    [17]HOU Jun-hua, TAN Wen-bing, YU Hong, DANG Qiu-ling, LI Ren-fei, XI Bei-dou. MICROPLASTICS IN SOIL ECOSYSTEM: A REVIEW ON SOURCES, FATE, AND ECOLOGICAL IMPACT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 16-27,15. doi: 10.13205/j.hjgc.202002002
  • Cited by

    Periodical cited type(19)

    1. 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 .
    2. 游洋洋,张涛,梁增强,霍宁. 我国农田土壤中微塑料污染研究进展与环境管理现状. 环境生态学. 2024(02): 101-106 .
    3. 朱晓艳,王琪琛,姜懿真,武忠,柳钟惠,陈吉孝,王钰琳,袁宇翔. 微塑料对稻田土壤-水界面重金属分布及迁移的影响. 水生态学杂志. 2024(03): 10-20 .
    4. 温浩军,陈学庚,陈浩,缑海啸. 农田地膜回收机械应用现状与发展. 农业环境科学学报. 2024(06): 1271-1277 .
    5. 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . 本站查看
    6. 熊新港,殷伟庆,常铖炜,王超,林华星,赵文青,李冠霖,解清杰. 农田土壤微塑料的检测及环境行为研究进展. 土壤通报. 2024(03): 886-900 .
    7. 杨文硕,梁鑫,王旭刚,石兆勇,杜鹃. 微塑料对土壤理化性质和生物特性的影响及其降解研究进展. 江苏农业科学. 2024(16): 20-29 .
    8. 路浩东,赵少婷,张俊丽,王蕊,贾汉忠,代允超. 不同类型地膜降解规律及其对土壤理化性质的影响. 农业资源与环境学报. 2024(05): 1171-1181 .
    9. 张茵,侯建平. 试论生态环境保护视域下农业生产用地土壤中塑料微粒污染问题. 中国农业综合开发. 2024(10): 40-45 .
    10. 张蕾,孙东,张建强,朱艳宏,陆一新,李经涵,何杨. 农膜微塑料与酞酸酯在土壤中迁移的研究进展. 土壤. 2024(05): 938-947 .
    11. 姜晓旭,封雪,周笑白,袁广旺,李宗超,郑明辉,李名升. 土壤中微塑料污染现状与检测技术研究进展. 环境化学. 2023(01): 163-175 .
    12. 邓爱琴,赵保卫,朱正钰,段凯祥,张鑫,索进苗,杨茂莺,杨佳妮. 土壤中微塑料的来源与其生态毒理效应研究进展. 环境化学. 2023(02): 345-357 .
    13. 仲子文,李冰,李彦,李德伟,刘延美,颜晓,刘宾绪,刘兆东,王艳芹,孙斌,薄录吉. 我国农田土壤微塑料和重金属污染现状与研究展望. 山东农业科学. 2023(02): 165-172 .
    14. 史增录,张学军,程金鹏,周鑫城,张朝书. 垂直双排链式残膜回收机输膜卸膜装置设计与试验. 干旱地区农业研究. 2023(03): 257-265 .
    15. 陈方涛,刘振鹏,金荣荣,吕军. 浅议潍坊市农村生态环境污染成因及治理经验. 南方农业. 2023(07): 90-92+100 .
    16. 刘明宇,郑旭,强丽媛,李鲁华,张若宇,王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析. 生态环境学报. 2023(11): 2050-2061 .
    17. 臧宇飞,李一凡,吴金柱,徐保建,陈飞勇,王静,邵媛媛,宋扬,王全勇,张瑞娜,刘兵. 城镇有机垃圾热解工艺研究进展. 当代化工. 2022(04): 928-935 .
    18. 张琳,王斯腾,马丽新. 一次性聚丙烯餐盒中汞、砷迁移量分析研究. 环境科技. 2022(03): 69-72 .
    19. 贾涛,薛颖昊,靳拓,鲁天宇. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展. 生态毒理学报. 2022(05): 202-216 .

    Other cited types(25)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 82.7 %META: 82.7 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.5 %其他: 15.5 %其他: 1.1 %其他: 1.1 %Absecon: 0.1 %Absecon: 0.1 %China: 0.3 %China: 0.3 %[]: 0.1 %[]: 0.1 %上海: 4.7 %上海: 4.7 %东莞: 1.1 %东莞: 1.1 %临汾: 0.3 %临汾: 0.3 %丽水: 0.3 %丽水: 0.3 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %伊犁: 0.4 %伊犁: 0.4 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 6.1 %北京: 6.1 %南京: 2.1 %南京: 2.1 %南宁: 0.3 %南宁: 0.3 %南平: 0.1 %南平: 0.1 %南昌: 0.6 %南昌: 0.6 %台州: 0.6 %台州: 0.6 %合肥: 1.0 %合肥: 1.0 %吉林: 0.3 %吉林: 0.3 %呼和浩特: 0.4 %呼和浩特: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.6 %天津: 0.6 %太原: 0.4 %太原: 0.4 %威海: 0.8 %威海: 0.8 %宁波: 0.4 %宁波: 0.4 %安康: 0.1 %安康: 0.1 %安阳: 0.3 %安阳: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.6 %广州: 0.6 %开封: 0.4 %开封: 0.4 %张家口: 1.0 %张家口: 1.0 %德州: 0.6 %德州: 0.6 %德阳: 0.8 %德阳: 0.8 %成都: 1.4 %成都: 1.4 %扬州: 1.0 %扬州: 1.0 %无锡: 0.4 %无锡: 0.4 %昆明: 0.6 %昆明: 0.6 %晋中: 0.4 %晋中: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 0.6 %武汉: 0.6 %汕头: 0.3 %汕头: 0.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.3 %沧州: 0.3 %泰勒: 0.4 %泰勒: 0.4 %泰安: 0.7 %泰安: 0.7 %泰州: 0.8 %泰州: 0.8 %洛阳: 0.1 %洛阳: 0.1 %济源: 0.3 %济源: 0.3 %深圳: 0.1 %深圳: 0.1 %湖州: 0.6 %湖州: 0.6 %湛江: 0.8 %湛江: 0.8 %滁州: 0.1 %滁州: 0.1 %漯河: 1.0 %漯河: 1.0 %焦作: 0.3 %焦作: 0.3 %瓦赫宁恩: 0.4 %瓦赫宁恩: 0.4 %白城: 0.1 %白城: 0.1 %石家庄: 0.6 %石家庄: 0.6 %石河子: 0.1 %石河子: 0.1 %福州: 0.3 %福州: 0.3 %秦皇岛: 1.4 %秦皇岛: 1.4 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 20.8 %芒廷维尤: 20.8 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.3 %苏州: 0.3 %莫斯科: 0.8 %莫斯科: 0.8 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %西宁: 6.0 %西宁: 6.0 %西安: 1.8 %西安: 1.8 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.5 %运城: 1.5 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.9 %郑州: 1.9 %鄂州: 0.3 %鄂州: 0.3 %重庆: 0.4 %重庆: 0.4 %镇江: 0.4 %镇江: 0.4 %长沙: 1.7 %长沙: 1.7 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.6 %青岛: 0.6 %马德里: 2.1 %马德里: 2.1 %其他其他AbseconChina[]上海东莞临汾丽水乌鲁木齐伊犁保定六安兰州北京南京南宁南平南昌台州合肥吉林呼和浩特哈尔滨大连天津太原威海宁波安康安阳宣城常州常德平顶山广州开封张家口德州德阳成都扬州无锡昆明晋中晋城朝阳杭州武汉汕头江门沈阳沧州泰勒泰安泰州洛阳济源深圳湖州湛江滁州漯河焦作瓦赫宁恩白城石家庄石河子福州秦皇岛绍兴芒廷维尤芝加哥苏州莫斯科衡水衡阳西宁西安贵阳运城遵义邯郸郑州鄂州重庆镇江长沙长治阜阳阳泉青岛马德里

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (170) PDF downloads(3) Cited by(44)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return