Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Shuxin, ZHOU Jingqing, SUN Qinqin, WANG Kun, LIU Zhengzheng, YU Lei, LIU Jinsong, WANG Jing. PHOTOCATALYTIC DEGRADATION OF TRIMETHOPRIM BASED ON WO3-x UNDER FULL SPECTRUM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 140-145,172. doi: 10.13205/j.hjgc.202302019
Citation: CHEN Shuxin, ZHOU Jingqing, SUN Qinqin, WANG Kun, LIU Zhengzheng, YU Lei, LIU Jinsong, WANG Jing. PHOTOCATALYTIC DEGRADATION OF TRIMETHOPRIM BASED ON WO3-x UNDER FULL SPECTRUM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 140-145,172. doi: 10.13205/j.hjgc.202302019

PHOTOCATALYTIC DEGRADATION OF TRIMETHOPRIM BASED ON WO3-x UNDER FULL SPECTRUM

doi: 10.13205/j.hjgc.202302019
  • Received Date: 2022-03-31
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Photocatalysis is a green and efficient pollutant treatment technology. The lack of utilization of the mid-infrared light region by traditional photocatalytic materials causes a waste of resources and limits the upper limit of pollutants' degradation efficiency. This study used photocatalytic degradation of TMP based on WO3-x to explore the degradation performance under different spectra and the degradation mechanism under the optimal degradation condition. The results showed that TMP was hardly degraded under dark and infrared light conditions. Compared with UV-visible light, the degradation of TMP under full spectrum conditions was increased by 44.8%. The mechanism of TMP degradation by WO3-x photocatalytic reaction in the two systems was similar, and O-2· and H2O2 were the active species that played the main role. During the degradation process, a large number of active radicals were generated on the catalyst surface and then entered the homogeneous system to promote the degradation of TMP. At the same time, temperature was not the dominant factor in improving the degradation rate in the reaction system, because WO3-x exhibited excellent degradation ability due to the effective absorption of the mid-infrared light region of the full spectrum.
  • [1]
    朱昊, 韦起壮, 陈云, 等. 硫酸头孢喹肟联合甲氧苄啶作用下金黄色葡萄球菌体外药效及适应性耐药研究[J]. 黑龙江畜牧兽医, 2021(17):1-5.
    [2]
    YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science & Health Part B, 2011, 46(3):272-280.
    [3]
    JU H, ZHANG J, SUN C. Occurrence, spatial distribution and risk and hazard assessments of antibiotics in drinking water sources of a polluted large river basin in China[J]. Aquatic Ecosystem Health & Management, 2017,21(1):107-117.
    [4]
    ABOU-EISHA A. Evaluation of cytogenetic and DNA damage induced by the antibacterial drug, trimethoprim[J]. Toxicology in Vitro, 2006, 20(5):601-607.
    [5]
    郑恒, 丁水平. 液相色谱-串联质谱法测定人血浆中磺胺甲噁唑和甲氧苄啶的浓度[J]. 中国临床药理学杂志, 2020, 36(18):2901-2904

    , 2935.
    [6]
    KONG J, LI R B, WANG F L, et al. Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate:mechanisms and reaction pathways[J]. RSC Advances, 2018, 8(44):24787-24795.
    [7]
    MICHAEL I, HAPESHI E, MICHAEL C, et al. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents[J]. Water Science and Technology, 2013, 67(6):1260-1271.
    [8]
    贺全宝, 胡征, 葛明. BiOX(X=Cl,Br,I)复合光催化材料降解水体中抗生素研究进展[J]. 应用化学, 2021, 38(7):754-766.
    [9]
    马瑞霄, 周浩, 张燕辉. RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J]. 工业水处理, 2021, 41(3):53-56.
    [10]
    PATEL P, KUMAR D, GANANADHAMU S, R. Srinivas, characterization of the stress degradation products of tolvaptan by UPLC-Q-TOF-MS/MS[J]. RSC Advances, 2015, 5(27):21142-21152.
    [11]
    WINGERT N R, SANTOS N O, NUNES A G, et al. Characterization of three main degradation products from novel oral anticoagulant rivaroxaban under stress conditions by UPLC-Q-TOF-MS/MS[J]. Journal of Pharmaceutical & Biomedical Analysis, 2016,1:10-15.
    [12]
    张素娟, 段世祥, 陈高礼, 等. MoS2/Zn3In2S6复合光催化剂构建:高效提升可见光驱动甲酸制氢[J]. 催化学报, 2021, 42(1):193-204.
    [13]
    巫杨, 贾赟婧, 吴筱原, 等.紫外光催化降解水溶液中甲氧苄氨嘧啶的实验研究[J]. 2015, 4(2):32-36.
    [14]
    TIAN J, SANG Y H, YU G W, et al. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Advanced Materials, 2013, 25(36):5074.
    [15]
    龚洁, 赵凤怡, 邹曦, 等. g-C3N4/Ag2O复合光催化剂的制备及其近红外光催化性能[J]. 武汉科技大学学报, 2021, 44(2):100-106.
    [16]
    丁倩, 陈涛, 李政, 等. Cr2O3-Rh/Ga2O3光催化分解水的时间分辨红外光谱研究[J]. 催化学报, 2021, 42(5):818-816.
    [17]
    张代生. 上转换微纳米晶@TiO2核/壳结构红外光催化材料的制备和表征[D]. 长春:吉林大学, 2011.
    [18]
    RAMIS G, CRISTIANI C, ELMI A S, et al. Characterization of the surface properties of polycrystalune WO3[J]. Journal of Molecular Catalysis, 1990, 61(3):319-331.
    [19]
    BAZARJANI M S, HOJAMBERDIEV M, MORITA K, et al. Visible light photocatalysis with c-WO3-x/WO3×H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer[J]. Journal of the American Chemical Society, 2013, 135(11):4467-4475.
    [20]
    SHEN Z G, ZHAO Z Y, QIAN J W, et al. Synthesis of WO3-x nanomaterials with controlled morphology and composition for highly efficient photocatalysis[J]. Journal of Materials Research, 2016, 31(8):1065-1076.
    [21]
    YAN M, LI G L, GUO C S, et al. WO3-x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared[J]. Nanoscale, 2016, 8(41):17828-17835.
    [22]
    费学宁, 崔良福, 申丛丛, 等. TiO2纳米颗粒在甲醇-水溶液中对3,4-二氯硝基苯的光催化性能[J]. 环境工程学报, 2021, 15(5):1509-1518.
    [23]
    黄有鹏, 吴福礼, 李兵, 等. WO3/g-C3N4复合光催化剂制备及其可见光催化性能[J]. 复合材料学报, 2021, 38(12):4265-4272.
    [24]
    张华, 张子鹏, 张澜澜, 等. H2O2强化光催化处理苯胺化工废水的应用试验[J]. 化工进展, 2020, 39(12):5299-5308.
    [25]
    HE Y P, ZHAO Y P. Near-infrared laser-induced photothermal coloration in WO3·H2O nanoflakes[J]. The Journal of Physical Chemistry C, 2008, 112(1):61-68.
    [26]
    SIRTORI C, AGUEERA A, GERNJAK W, et al. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways[J]. Water Research, 2010, 44(9):2735-2744.
    [27]
    JI Y F, XIE W P, YAN F, et al. Degradation of trimethoprim by thermo-activated persulfate oxidation:reaction kinetics and transformation mechanisms[J]. Chemical Engineering Journal, 2016, 286(10):16-24.
    [28]
    ZHANG R C, Sun P Z, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5):3056-3066.
  • Relative Articles

    [1]CUI Qian, ZHOU Zhixiang, GUAN Dongjie, XUE Yuqian. Research progress on accounting, modeling and influencing factors of transportation carbon emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004
    [2]ZHENG Xiaoying, LI Wenfei, ZHANG Huijie, HU Ruijie, XU Yadong, HAN Zongshuo, HE Haidong, CHEN Wei. RESEARCH ON ENDOGENOUS PARTIAL DENITRIFICATION GRANULAR SLUDGE CULTIVATION AND KEY INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 116-123. doi: 10.13205/j.hjgc.202409011
    [3]LI Cheng, LU Binbin, YI Xinyuan, SHAO Xuehong, XU Bin, TANG Yulin. CARBON EMISSION CHARACTERISTICS AND INFLUENCING FACTORS OF TYPICAL WATER SUPPLY PLANTS IN SHANGHAI BASED ON MONTHLY DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 131-139. doi: 10.13205/j.hjgc.202411014
    [4]HE Kaijie, HE Youjiang, YANG Xin, CHENG Miaomiao, LI Fuqiang, PENG Yujie, LI Bin. CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 162-170. doi: 10.13205/j.hjgc.202407018
    [5]HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027
    [6]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [7]YUAN Ye, GAO Jun, ZHANG Lulu, CHEN Tianming, DING Cheng. RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 69-77. doi: 10.13205/j.hjgc.202311013
    [8]MA Yan, ZHANG Dading, ZHANG Fan, CHENG Lu, MA Yue, GUO Jianda. INFLUENTING FACTORS OF CHITOSAN-MODIFIED ZEOLITE AND ITS STABILIZATION EFFECT ON MULTI METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 94-101,116. doi: 10.13205/j.hjgc.202201014
    [9]CHEN Yue, PAN Yang, NI Min, HUANG Yong, LI Da-peng, BI Zhen, ZHANG Xing-yu, WEN Lin-xiao. ANALYSIS OF INFLUENCING FACTORS OF PHOSPHATE ENHANCED ABSORPTION IN BSBR PROCESS UNDER LOW CARBON SOURCE CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 69-73,191. doi: 10.13205/j.hjgc.202209009
    [10]TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031
    [11]XU Ziqi, YAN Zhong, GE Yanju, WEI Quanyuan, HUANG Bo. OPTIMIZATION OF TECHNICAL PARAMETERS OF MECHANICAL ENHANCED RAPID COMPOSTING TECHNOLOGY FOR ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 159-163,142. doi: 10.13205/j.hjgc.202208022
    [12]CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
    [13]XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
    [14]LI Chung-yan, ZHANG Xi, SHEN Yu-jun, MENG Hai-bo, WEN Hong-da, ZHENG Sheng-wei, ZHOU Hai-bin, CHENG Hong-sheng. EFFECTS OF TURNING STRATEGY ON AEROBIC FERMENTATION PROPERTY OF PIG BIOGAS RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 130-135. doi: 10.13205/j.hjgc.202101020
    [15]XU Chen, ZHAN Jian, HU Jia-jun, WANG Liu-peng, CHEN Yun-hui, XUE Zhen-zhou. RESEARCH PROGRESS ON INFLUENCING FACTORS OF RAINWATER RUNOFF RETENTION AND POLLUTION INTERCEPTION EFFECT OF EXTENSIVE GREEN ROOF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 76-81. doi: 10.13205/j.hjgc.202009013
    [16]ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020
    [17]WANG Lei, ZHAN Han-hui, WANG Qing-qing, WU Gang. RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 1-7,29. doi: 10.13205/j.hjgc.202005001
    [18]CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022
    [19]LIU Wen-jie, WANG Li-ming, SHEN Yu-jun, ZHANG Xi, MENG Hai-bo, FAN Sheng-yuan, ZHANG Da-niu. EFFECTS OF CARBON TO NITROGEN RATIO ON MATURITY AND ODOR EMISSION IN AEROBIC FERMENTATION OF VEGETABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 233-239. doi: 10.13205/j.hjgc.202006038
    [20]CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027
  • Cited by

    Periodical cited type(2)

    1. 蒲浩,王雁,郭泽宇,胡干琳,赵旭. 介孔Pt-Fe/Al_2O_3强化类芬顿催化降解罗丹明B性能与机理. 环境科学学报. 2024(07): 83-94 .
    2. 杨兴哲,林大峰,李俊伟,景方飞,左梓涵,唐立娜,杨宗政. 零价铁联合微生物修复氯代脂肪烃污染地下水的研究进展. 工业水处理. 2024(11): 42-51 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.8 %FULLTEXT: 19.8 %META: 78.9 %META: 78.9 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.2 %其他: 14.2 %China: 0.8 %China: 0.8 %Japan: 0.8 %Japan: 0.8 %[]: 0.4 %[]: 0.4 %上海: 3.2 %上海: 3.2 %东莞: 0.4 %东莞: 0.4 %临汾: 0.8 %临汾: 0.8 %保定: 0.4 %保定: 0.4 %北京: 1.2 %北京: 1.2 %南京: 0.8 %南京: 0.8 %台州: 1.2 %台州: 1.2 %天津: 1.2 %天津: 1.2 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %弗吉: 0.4 %弗吉: 0.4 %张家口: 0.8 %张家口: 0.8 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %晋城: 1.6 %晋城: 1.6 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.8 %杭州: 0.8 %格兰特县: 0.4 %格兰特县: 0.4 %济源: 0.8 %济源: 0.8 %温州: 2.0 %温州: 2.0 %湖州: 0.8 %湖州: 0.8 %滨州: 0.4 %滨州: 0.4 %漯河: 0.8 %漯河: 0.8 %盐城: 0.8 %盐城: 0.8 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 25.9 %芒廷维尤: 25.9 %芝加哥: 2.4 %芝加哥: 2.4 %苏州: 0.4 %苏州: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 27.5 %西宁: 27.5 %贵阳: 0.4 %贵阳: 0.4 %运城: 2.8 %运城: 2.8 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %其他ChinaJapan[]上海东莞临汾保定北京南京台州天津常德广州弗吉张家口成都扬州拉贾斯坦邦晋城朝阳杭州格兰特县济源温州湖州滨州漯河盐城石家庄芒廷维尤芝加哥苏州衢州西宁贵阳运城遵义邯郸重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(3) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return