Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Dong, LONG Jun, YANG Wei, LI Long, CHEN Renpeng. SUBSTRATE AMELIORATION OF FLUORITE-TYPE LEAD-ZINC TAILINGS AND ITS APPLICATION IN MINE RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 156-165. doi: 10.13205/j.hjgc.202302021
Citation: ZHANG Dong, LONG Jun, YANG Wei, LI Long, CHEN Renpeng. SUBSTRATE AMELIORATION OF FLUORITE-TYPE LEAD-ZINC TAILINGS AND ITS APPLICATION IN MINE RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 156-165. doi: 10.13205/j.hjgc.202302021

SUBSTRATE AMELIORATION OF FLUORITE-TYPE LEAD-ZINC TAILINGS AND ITS APPLICATION IN MINE RESTORATION

doi: 10.13205/j.hjgc.202302021
  • Received Date: 2022-02-23
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Taking the disposal of huge-scale tailing slag generated in the construction of a fluorite lead-zinc mine in Chenzhou, Hunan province and greening of the dump as the research object, the physical and chemical defects of tailing slag were clarified by soil obstacle factor identification firstly. Then, biochemical fulvic acid (BFA), ammonium dihydrogen phosphate, zeolite and organic fertilizer were used to modify the corresponding properties. After that, a modified tailing matrix was used as the planting soil. Furthermore, a pot experiment in an artificial climate incubator combined with a pilot test in mine was used to evaluate the remediation effect of modifier and plant on tailing slag, and an ecological restoration method based on in-situ matrix improvement and direct vegetation of tailing was proposed eventually. The results showed that when the addition amount of BFA, ammonium dihydragen phosphace, zeolite and organic fertilizer was 0.5%, 0.4%, 2% and 15% respectively, the pH value and dry density of tailings decreased by 25.8% and 77.6% respectively, and non-capillary porosity, organic matter content, hydrolytic nitrogen content and available phosphorus content of tailings improved by 1.49 times, 26.7 times, 9.3 times and 20.9 times, respectively. The results of pot experiment and field pilot test showed that the comprehensive enrichment and transport ability of Eleusine indica to fluoride, lead and zinc, was the highest; Cosmos bipinnata had the best comprehensive accumulation capacity, and the enrichment amounts of lead, zinc and fluorine were 267.2 mg/kg, 432.8 mg/kg and 513.2 mg/kg, respectively; Amaranthus hybridus was the selected plant with the transport coefficients of lead, zinc and fluorine of 0.485, 1.208 and 1.810, respectively. In order to achieve the reclamation effect of fluorite lead-zinc mine, it is necessary to plant Eleusine indica, Cosmos bipinnata and Amaranthus hybridus simultaneously.
  • loading
  • [1]
    罗景阳,李依,李涵,等.基于城市固体废弃物的生物炭制备及其在垃圾填埋场和土壤改良中的应用研究进展[J].环境工程,2022,40(3):194-202.
    [2]
    孙凯伦.聚丙烯酰胺和荧光标记聚丙烯酰胺的合成与表征及其对土壤的改良研究[D].广州:华南理工大学,2020.
    [3]
    WANG S J, CHEN Q, LI Y, et al. Research on saline-alkali soil amelioration with FGD gypsum[J]. Resources, Conservation and Recycling, 2017, 121:82-92.
    [4]
    YAMAGUCHI T, BLUMWALD E. Developing salt-tolerant crop plants:challenges and opportunities[J]. Trends in plant science, 2005, 10(12):615-620.
    [5]
    曹秀芹,刘丰,柴莲莲,等.污泥生物炭制备与其对土壤环境影响的研究进展[J].环境工程,2022,40(3):203-211.
    [6]
    黄俊熙,严兴,雷芳,等.添加辅料对污泥堆肥产品的生物肥效的影响[J].环境工程,2021,39(3):142-147.
    [7]
    SINGH A, CHHABRA R, ABOL I P. Effect of fluorine and phosphorus on the yield and chemical composition of rice (Oryza sativa) grown in soils of two sodicities[J]. Soil Science, 1979, 127(2):86-93.
    [8]
    贾陈忠,秦巧燕,侯延军,等.荆州大气氟污染与植物叶片含氟量监测分析[J].环境工程,2004,22(3):64-66.
    [9]
    缪崑,王雁,彭镇华.植物对氟化物的吸收积累及抗性作用[J].东北林业大学学报,2002,22(3):100-106.
    [10]
    贾培凝,王琼琼,孙威江,等.不同基因型茶树品种对稀土、氟和铝积累响应的转录分析[J].分子植物育种,2022,20(7):2204-2216.
    [11]
    蒋旭升,刘杰,李海翔,等.复垦铅锌矿尾砂库的植被恢复和基质演变[J].环境工程,2021,39(12):220-226.
    [12]
    龙珍,徐海涛,张亚平,等.活化剂联合植物移除污染土壤重金属的研究进展[J].环境工程,2016,34(10):172-176

    ,152.
    [13]
    吴双桃,吴晓芙,胡曰利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[J].生态环境,2004,13(2):156-157

    ,160.
    [14]
    王瑞山,谢容生,杨艺行,等.云雾苔草与蜈蚣草联合修复重金属污染土壤初探[J].有色金属(矿山部分),2017,69(4):1-4.
    [15]
    汤叶涛,仇荣亮,曾晓雯,等.一种新的多金属超富集植物:圆锥南芥(Arabis paniculata L.)[J].中山大学学报(自然科学版),2005,44(4):135-136.
    [16]
    FENG Y, WANG J M, BAI Z K, et al. Effects of surface coal mining and land reclamation on soil properties:a review[J]. Earth-Science Reviews, 2019, 191:12-25.
    [17]
    赵鹏,史兴萍,尚卿,等.矿区复垦地土壤改良研究进展[J].农业资源与环境学报,2023,40(1):1-14.
    [18]
    易龙生,米宏成,吴倩,等.中国尾矿资源综合利用现状[J].矿产保护与利用,2020,40(3):79-84.
    [19]
    中华人民共和国住房和城乡建设部. 绿化种植土壤:CJ/T 340-2016[S].北京:中国标准出版社,2016.
    [20]
    张丽丽,李继蕊,毕焕改,等.不同土壤pH和磷水平下黄腐酸对番茄产量和根际土壤微生态的影响[J].中国蔬菜,2021(11):45-52.
    [21]
    吴军虎,李玉晨,邵凡凡,等.生化黄腐酸对土壤物理性质及水分运动特性的影响[J].水土保持学报,2021,35(4):159-164

    ,171.
    [22]
    张晓宇,高原,刘彩娟,等.黄腐酸与化肥配施对设施辣椒根区土壤环境及氮磷钾利用效率的影响[J].山东农业大学学报(自然科学版),2021,52(6):893-902.
    [23]
    唐雪,尚辉,刘广明,等.复合改良剂对盐碱土改良及植物生长的影响[J].土壤,2021,53(5):1033-1039.
    [24]
    陈义群,董元华.土壤改良剂的研究与应用进展[J].生态环境,2008,17(3):1282-1289.
    [25]
    索琳娜,马杰,刘宝存,等.土壤调理剂应用现状及施用风险研究[J].农业环境科学学报,2021,40(6):1141-1149.
    [26]
    蔡燕飞,何成新,廖宗文,等.蛭石和沸石对番茄青枯病及土壤微生物的影响[J].生态环境,2003,12(2):179-181.
    [27]
    王立刚,李维炯,邱建军,等.生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,2004(5):12-16.
    [28]
    安祥瑞,江尚焘,李焕苓,等.减施化肥配施有机肥对荔枝生长、产量品质及肥料利用率的影响[J].土壤,2021,53(6):1174-1184.
    [29]
    王志玉,刘作新,赵京考.土壤改良剂MDM对松嫩平原草甸碱土的改良效果[J].水土保持学报,2004,18(1):144-146.
    [30]
    周祥宇,冯倩楠,冷锁虎,等.油菜毯状育苗的基质改良Ⅱ合理配施磷酸氢二铵[J].中国油料作物学报,2020,42(2):183-187.
    [31]
    王远英.园林植物抗氟化物污染的调查分析[J].青海草业,2001(3):24-26.
    [32]
    聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报,2004,20(4):255-258.
    [33]
    方青,丁子微,孙庆业,等.客土改良铜尾矿对香根草生理特征及重金属吸收的影响[J].农业环境科学学报,2021,40(1):83-91.
    [34]
    倪才英,陈英旭,骆永明,等.紫云英(Astragalus siniucus L.)对重金属胁迫的响应[J].中国环境科学,2003,23(5):56-61.
    [35]
    王小平,马延龙,姚一铭,等.应用于碱性土壤上重金属污染的超积累植物种植研究[J].有色金属(冶炼部分),2021(11):107-112.
    [36]
    任秀娟,朱东海,吴大付,等.湖南南部铅锌矿区铅锌富集植物筛选研究[J].生态环境学报,2014,23(4):669-672.
    [37]
    汤叶涛,吴妤都,仇荣亮,等.滇苦菜(Picris divaricata Vant.)对锌的吸收和富集特性[J].生态学报,2009,29(4):1823-1831.
    [38]
    陈红琳,张世熔,李婷,等.汉源铅锌矿区植物对Pb和Zn的积累及耐性研究[J].农业环境科学学报,2007,26(2):505-509.
    [39]
    王茜,石瑛,张猛,等.氟化物的危害及植物去氟作用研究进展[J].现代农业科技,2012(7):271-273.
    [40]
    张新平.土壤改良和植物对赣南某离子型稀土尾矿联合修复研究[D].南昌:江西农业大学,2021.
    [41]
    高霞.不同施肥条件下植物对弃土场土壤改良效果的研究[D].咸阳:西北农林科技大学,2014.
    [42]
    郭洋.不同盐生植物吸盐特征及其对土壤改良效果[D].乌鲁木齐:新疆农业大学,2014.
    [43]
    BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements:a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2):81-126.
    [44]
    GHADERIAN S M, MOHTADI A, RAHIMINEJAD R, et al. Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran[J]. Plant and Soil, 2007, 293(1):91-97.
    [45]
    李晓旭.土壤铜、锌、铅污染对上海草本植物群落的影响[D].上海:华东师范大学,2016.
    [46]
    郑存住.重金属复合污染土壤生物炭和草本植物联合修复技术研究[D].上海:上海交通大学,2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (139) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return