Citation: | XIA Jingming, XU Zifeng, TAN Lin. APPLICATION RESEARCH OF LIGHTWEIGHT NETWORK LW-GCNet IN GARBAGE CLASSIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 173-180. doi: 10.13205/j.hjgc.202302023 |
[1] |
孙晓杰, 王春莲, 李倩, 等. 中国生活垃圾分类政策制度的发展演变历程[J]. 环境工程, 2020, 38(8):65-70.
|
[2] |
任中山, 陈瑛, 王永明. 生活垃圾分类对垃圾焚烧发电产业发展影响的分析[J]. 环境工程, 2021, 39(6):150-153.
|
[3] |
王肇嘉, 秦玉, 顾军, 等. 生活垃圾焚烧飞灰二噁英控制技术研究进展[J]. 环境工程, 2021,39(10):116-123.
|
[4] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25:1097-1105.
|
[5] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
|
[6] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//The thirty-first AAAI conference on artificial intelligence. 2017.
|
[7] |
TAN M X, LE Q V. Efficientnet:rethinking model scaling for convolutional neural networks[C]//the International Conference on Machine Learning. PMLR, 2019:6105-6114.
|
[8] |
YANG M, THUNG G. Classification of trash for recyclability status[R]. CS229 Project Report, 2016, 2016:3.
|
[9] |
ARAL R A, KESKIN R, KAYA M, et al. Classification of trashnet dataset based on deep learning models[C]//2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018:2058-2062.
|
[10] |
RABANO S L, CABATUAN M K, SYBINGCO E, et al. Common garbage classification using mobilenet[C]//2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2018:1-4.
|
[11] |
KENNEDY T. OscarNet:Using transfer learning to classify disposable waste[R]. CS230 Report:Deep Learning. Stanford University, CA, Winter, 2018.
|
[12] |
OZKAYA U, SEYFI L. Fine-tuning models comparisons on garbage classification for recyclability[J]. arXiv:1908.04393, 2019.
|
[13] |
KANG Z, YANG J, LI G, et al. An automatic garbage classification system based on deep learning[J]. IEEE Access, 2020, 8:140019-140029.
|
[14] |
SHI C P, XIA R Y, WANG L G. A novel multi-branch channel expansion network for garbage image classification[J]. IEEE Access, 2020, 8:154436-154452.
|
[15] |
ZENG M, LU X Z, XU W K, et al. PublicGarbageNet:a deep learning framework for public garbage classification[C]//2020 39th Chinese Control Conference (CCC). IEEE, 2020:7200-7205.
|
[16] |
LI Y F, LIU W. Deep learning-based garbage image recognition algorithm[J]. Applied Nanoscience, 2021:1-10.
|
[17] |
MITTAL G, YAGNIK K B, GARG M, et al. Spotgarbage:smartphone app to detect garbage using deep learning[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016:940-945.
|
[18] |
PROENÇA P F, SIMÕES P. TACO:Trash annotations in context for litter detection[J]. arXiv:2003.06975, 2020.
|
[19] |
PANWAR H, GUPTA P K, SIDDIQUI M K, et al. AquaVision:automating the detection of waste in water bodies using deep transfer learning[J]. Case Studies in Chemical and Environmental Engineering, 2020, 2:100026.
|
[20] |
GUO J B, LI Y X, LIN W Y, et al. Network decoupling:from regular to depthwise separable convolutions[J]. arXiv:1808.05517, 2018.
|
[21] |
CHOLLET F. Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:1251-1258.
|
[22] |
ZHAO Q T, SHENG T, WANG Y T, et al. M2det:A single-shot object detector based on multi-level feature pyramid network[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):9259-9266.
|
[23] |
HAASE D, AMTHOR M. Rethinking depthwise separable convolutions:How intra-kernel correlations lead to improved mobilenets[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:14600-14609.
|
[24] |
GUO Y H, LI Y D, WANG L Q, et al. Depthwise convolution is all you need for learning multiple visual domains[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):8368-8375.
|
[25] |
HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:984-993.
|
[26] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[27] |
KAR A, RAI N, SIKKA K, et al. Adascan:adaptive scan pooling in deep convolutional neural networks for human action recognition in videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:3376-3385.
|
[28] |
LIN M, CHEN Q, YAN S. Network in network[J]. arXiv:1312.4400, 2013.
|
[1] | CUI Qian, ZHOU Zhixiang, GUAN Dongjie, XUE Yuqian. Research progress on accounting, modeling and influencing factors of transportation carbon emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004 |
[2] | ZHENG Xiaoying, LI Wenfei, ZHANG Huijie, HU Ruijie, XU Yadong, HAN Zongshuo, HE Haidong, CHEN Wei. RESEARCH ON ENDOGENOUS PARTIAL DENITRIFICATION GRANULAR SLUDGE CULTIVATION AND KEY INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 116-123. doi: 10.13205/j.hjgc.202409011 |
[3] | LI Cheng, LU Binbin, YI Xinyuan, SHAO Xuehong, XU Bin, TANG Yulin. CARBON EMISSION CHARACTERISTICS AND INFLUENCING FACTORS OF TYPICAL WATER SUPPLY PLANTS IN SHANGHAI BASED ON MONTHLY DATA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 131-139. doi: 10.13205/j.hjgc.202411014 |
[4] | HE Kaijie, HE Youjiang, YANG Xin, CHENG Miaomiao, LI Fuqiang, PENG Yujie, LI Bin. CHARACTERISTICS AND INFLUENCING FACTORS OF ATMOSPHERIC NH3 POLLUTION IN SHIHEZI[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 162-170. doi: 10.13205/j.hjgc.202407018 |
[5] | HE Zihao, YI Mengting, ZHONG Qiumeng, LIANG Sai. INFLUENCING FACTORS OF SYNERGY DEGREE FOR INDUSTRIAL POLLUTANT AND CARBON REDUCTIONS IN CHINESE CITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 206-214. doi: 10.13205/j.hjgc.202401027 |
[6] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[7] | YUAN Ye, GAO Jun, ZHANG Lulu, CHEN Tianming, DING Cheng. RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 69-77. doi: 10.13205/j.hjgc.202311013 |
[8] | MA Yan, ZHANG Dading, ZHANG Fan, CHENG Lu, MA Yue, GUO Jianda. INFLUENTING FACTORS OF CHITOSAN-MODIFIED ZEOLITE AND ITS STABILIZATION EFFECT ON MULTI METAL CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 94-101,116. doi: 10.13205/j.hjgc.202201014 |
[9] | CHEN Yue, PAN Yang, NI Min, HUANG Yong, LI Da-peng, BI Zhen, ZHANG Xing-yu, WEN Lin-xiao. ANALYSIS OF INFLUENCING FACTORS OF PHOSPHATE ENHANCED ABSORPTION IN BSBR PROCESS UNDER LOW CARBON SOURCE CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 69-73,191. doi: 10.13205/j.hjgc.202209009 |
[10] | TANG Xin-yi, CHEN Xiang-yu, XIAO Ben-yi, LIU Rong-zhan. THERMAL-ALKALINE TREATMENT OF SEWAGE SLUDGE AND ITS ENHANCEMENT ON ANAEROBIC SLUDGE DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 218-226. doi: 10.13205/j.hjgc.202205031 |
[11] | XU Ziqi, YAN Zhong, GE Yanju, WEI Quanyuan, HUANG Bo. OPTIMIZATION OF TECHNICAL PARAMETERS OF MECHANICAL ENHANCED RAPID COMPOSTING TECHNOLOGY FOR ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 159-163,142. doi: 10.13205/j.hjgc.202208022 |
[12] | CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006 |
[13] | XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008 |
[14] | LI Chung-yan, ZHANG Xi, SHEN Yu-jun, MENG Hai-bo, WEN Hong-da, ZHENG Sheng-wei, ZHOU Hai-bin, CHENG Hong-sheng. EFFECTS OF TURNING STRATEGY ON AEROBIC FERMENTATION PROPERTY OF PIG BIOGAS RESIDUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 130-135. doi: 10.13205/j.hjgc.202101020 |
[15] | XU Chen, ZHAN Jian, HU Jia-jun, WANG Liu-peng, CHEN Yun-hui, XUE Zhen-zhou. RESEARCH PROGRESS ON INFLUENCING FACTORS OF RAINWATER RUNOFF RETENTION AND POLLUTION INTERCEPTION EFFECT OF EXTENSIVE GREEN ROOF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 76-81. doi: 10.13205/j.hjgc.202009013 |
[16] | ZHU Wen-bin, GAO Ming, YIN Zi-he, WU Chuan-fu, WANG Qun-hui. RESEARCH PROGRESS ON CAPROIC ACID PRODUCTION FROM ORGANIC WASTE BY ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 128-134. doi: 10.13205/j.hjgc.202001020 |
[17] | WANG Lei, ZHAN Han-hui, WANG Qing-qing, WU Gang. RESEARCH PROGRESS OF INFLUENCE PARAMETERS AND METHODS FOR RAPIDLY CULTIVATING AEROBIC GRANULAR SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 1-7,29. doi: 10.13205/j.hjgc.202005001 |
[18] | CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022 |
[19] | LIU Wen-jie, WANG Li-ming, SHEN Yu-jun, ZHANG Xi, MENG Hai-bo, FAN Sheng-yuan, ZHANG Da-niu. EFFECTS OF CARBON TO NITROGEN RATIO ON MATURITY AND ODOR EMISSION IN AEROBIC FERMENTATION OF VEGETABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 233-239. doi: 10.13205/j.hjgc.202006038 |
[20] | CALCULATION OF CARBON EMISSION REDUCTION OF NEW ENERGY VEHICLES AND ANALYSIS OF ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 148-152. doi: 10.13205/j.hjgc.201412027 |
1. | 蒲浩,王雁,郭泽宇,胡干琳,赵旭. 介孔Pt-Fe/Al_2O_3强化类芬顿催化降解罗丹明B性能与机理. 环境科学学报. 2024(07): 83-94 . ![]() | |
2. | 杨兴哲,林大峰,李俊伟,景方飞,左梓涵,唐立娜,杨宗政. 零价铁联合微生物修复氯代脂肪烃污染地下水的研究进展. 工业水处理. 2024(11): 42-51 . ![]() |