Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Luqiang, DANG Xiaoqing, JI Shuo, LIU Xudong, WENG Yan, LI Xu, LI Shijie, WANG He. EXPERIMENTAL STUDY ON DIOXINS CONTROL DURING LOW-TEMPERATURE PYROLYSIS OF DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 188-196,218. doi: 10.13205/j.hjgc.202302025
Citation: SUN Luqiang, DANG Xiaoqing, JI Shuo, LIU Xudong, WENG Yan, LI Xu, LI Shijie, WANG He. EXPERIMENTAL STUDY ON DIOXINS CONTROL DURING LOW-TEMPERATURE PYROLYSIS OF DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 188-196,218. doi: 10.13205/j.hjgc.202302025

EXPERIMENTAL STUDY ON DIOXINS CONTROL DURING LOW-TEMPERATURE PYROLYSIS OF DOMESTIC WASTE

doi: 10.13205/j.hjgc.202302025
  • Received Date: 2022-05-10
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Based on the phenomenon of substandard dioxin emission from waste pyrolysis flue gas, this paper proposed a method of quantitative oxygen supply and stratified dioxin control based on the analysis of the waste pyrolysis and dioxin generation mechanism, used a combination of numerical analysis and experimental test to simulate the airflow organization inside the furnace and waste pyrolysis process, and discussed the effect of air supply on dioxin synthesis. The results showed that the overall distribution of airflow inside the pyrolysis furnace was relatively uniform, which ensured the stable pyrolysis of waste. The temperature stratification along the axial direction of the pyrolysis furnace was consistent with the theoretical analysis, but there was a dioxin synthesis atmosphere in the transition layer between the combustion layer and the pyrolysis layer; the measured results of the pyrolysis furnace temperature were in good agreement with the simulation results as a whole; a comprehensive comparison suggested that operation of the pyrolysis furnace with an air excess factor of 0.3 was more conducive to reducing dioxin generation, and the waste treatment capacity was 2.4 t/d. The field test result showed that, except for the particulate matter concentration exceeded the standard, the other conventional pollutants from pyrolysis furnace outlet flue gas and dioxin emission concentration met the Standard for Pollution Control of Domestic Waste Incineration (GB 18485-2014). The commercially available common furnace model dioxin outlet concentration was 0.44 ng-TEQ/m3, exceeding the national emission standard limit of 0.1 ng-TEQ/m3. The experimental results of the two furnace types proved that dioxin generation in the flue gas could be effectively suppressed by quantitative oxygen supply and stratified control on the basis of uniform gas distribution in the pyrolysis furnace. The study could provide a theoretical basis for the control of dioxins in low-temperature pyrolysis of domestic waste.
  • [1]
    中华人民共和国住房和城乡建设部. 中国城市建设统计年鉴(2020)[M]. 北京:中国统计出版社, 2021.
    [2]
    张国治, 魏珞宇, 葛一洪, 等. 我国农村生活垃圾处理现状及其展望[J]. 中国沼气, 2021, 39(4):54-61.
    [3]
    VAVERKOVÁ M D. Landfill impacts on the environment[J]. Geosciences, 2019, 9(10):431.
    [4]
    TITTO E, SAVINO A. Environmental and health risks related to waste incineration[J]. Waste Management & Research, 2019, 37(10):976-986.
    [5]
    桂莉. 农村生活垃圾热解污染物排放特征研究[D]. 广州:华南理工大学, 2014.
    [6]
    党小庆, 夏夕科, 吕涛, 等. 生活垃圾热解烟气净化设备研究与应用[C]//中国电除尘学术会议. 安徽, 2013.
    [7]
    黄付平, 黄智宁, 谢启军, 等. 低温热解耦合高压等离子体技术处理农村生活垃圾工程应用[J]. 环境工程, 2019, 37(5):196-199.
    [8]
    黄宇钊, 韩彪, 潘翠, 等. 新型稳定控制热解炉处理农村生活垃圾的应用[J]. 环境科技, 2020, 33(1):41-44.
    [9]
    雷鸣, 海景, 程江, 等. 小型生活垃圾热处理炉二噁英和重金属的排放特征[J]. 中国环境科学, 2017, 37(10):3836-3844.
    [10]
    孙宏宇, 董玉平, 周淑霞, 等. 基于Fluent的固定床生物质气化炉冷态压力场研究[J]. 农业机械学报, 2010, 41(11):94-97

    ,104.
    [11]
    肖波, 汪莹莹, 周新平, 等. 基于烟气加热的新型垃圾热解气化炉热工特性数值模拟[J]. 环境工程, 2007,25(2):52-55.
    [12]
    MELLIN P, KANTARELIS E, YANG W. Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme[J]. Fuel, 2014, 117(pt.A):704-715.
    [13]
    陆杰, 金保昇. 生物质流化床气化的三维数值模拟[J]. 太阳能学报, 2018, 39(10):2863-2868.
    [14]
    VOGG H, METZGER M, STIEGLITZ L. Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration[J]. Waste Management & Research, 1987, 5(1):285-294.
    [15]
    CAI P T, FU J Y, ZHAN M X, et al. Formation mechanism and influencing factors of dioxins during incineration of mineralized refuse[J]. Journal of Cleaner Production, 2022, 342:130762.
    [16]
    JIE Y, LI X, MI Y, et al. Denovo tests on medical waste incineration fly ash:effect of oxygen and temperature[J]. Fresenius Environmental Bulletin, 2015, 24(2a):587-595.
    [17]
    ADDINK R, OLIE K. Role of oxygen in formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon on fly ash[J]. Environmental Science & Technology, 1995, 29(6):1586-1590.
    [18]
    TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms:a review[J]. Chemosphere, 1998, 36(7):1493-1511.
    [19]
    杨明辉, 陈祎, 刘金和, 等. PVC热解特性及Cl的析出过程研究[J]. 工业加热, 2020, 49(5):44-47.
    [20]
    田中训, 刘伟军. 聚氯乙烯废弃物的热解特性与处理[J]. 塑料, 2022, 51(1):121-126

    ,130.
    [21]
    张睿智, 罗永浩. 用于低二噁英热化学转化过程的低温预先脱氯方法和装置:CN111330942A[P]. 2020-06-26.
  • Relative Articles

    [1]YANG Yanmei, XIA Tong, ZHANG Yun, AO Liang. SIMULATION ON TRANSPORT OF GROUNDWATER POLLUTANTS AFTER CLOSURE OF A LANDFILL IN CHONGQING BASED ON VISUAL MODFLOW[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 40-47. doi: 10.13205/j.hjgc.202404005
    [2]SONG Zhanlong, TAO Shuanghua, XU Baolin, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong, YU Jun. HEAT TRANSFER SIMULATION AND ENERGY ANALYSIS OF RADIATIVE PYROLYSIS OF OILY SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 73-81. doi: 10.13205/j.hjgc.202402009
    [3]ZHAO Tianrui, CHEN Zhengrui, LIU Yiming, LI Yanliang, GUO Wei, TANG Xiaomi, TIAN Yu, ZHANG Jun, WANG Shutao. A SPATIAL DISTRIBUTION MODEL OF DOMESTIC WASTE BASED ON GIS REMOTE SENSING DATA ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 213-218. doi: 10.13205/j.hjgc.202302028
    [4]NIU Yi, LI Wei, LI Gongke, WANG Weixing, LI Mingming, CAO Shuping, LÜ Xiaowen. SIMULATION OF RESTORATION OF GROUNDWATER POLLUTION IN A LANDFILL IN COASTAL PLAIN AREA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 12-20. doi: 10.13205/j.hjgc.202303002
    [5]LI Jian, WU Chunmao, QI Zhanfeng. NUMERICAL SIMULATION OF AIRFLOW DISTRIBUTION AND STRUCTURAL OPTIMIZATION IN AN ELECTROSTATIC OIL MIST PURIFIER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 202-208. doi: 10.13205/j.hjgc.202308026
    [6]LI Hai-dan, ZHENG Li-ping, ZHOU Han, SUN Yu-can, ZHANG Tao, CHEN Tan, YANG Ting, ZHANG Bing. REVIEW ON SPATIAL-TEMPORAL DISTRIBUTION CHARACTERISTICS OF MUNICIPAL SOLID WASTE COMPONENTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 126-134. doi: 10.13205/j.hjgc.202209017
    [7]LI Debo, CHEN Zhaoli, CHEN Zhihao, FENG Yongxin, HUANG Zigan, WEI Chen, MA Xiaoqian. NUMERICAL SIMULATION OF MIXED FIRING OF AGED REFUSE AND AIR DISTRIBUTION OPTIMIZATION IN A MSW INCINERATION FURNACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 113-119. doi: 10.13205/j.hjgc.202211016
    [8]MA Jiayu, JIN Yuqi, XUE Dong, TANG Feng, ZHU Zhongxu, LI Minjie, CHEN Siyu. DIOXIN EMISSION CHARACTERISTICS OF A NOVEL 30 t/d VILLAGE AND TOWN-SCALE SOLID WASTES GASIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 162-168. doi: 10.13205/j.hjgc.202210022
    [9]SHI Zifu, ZHANG Xingqun, ZHOU Yonggang, HUANG Qunxing. OPTIMIZATION OF INCINERATORS FOR HIGH CALORIFIC VALUE DOMESTIC WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 109-115. doi: DOI:10.13205/j.hjgc.202207016
    [10]SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017
    [11]REN Zhong-shan, CHEN Ying, WANG Yong-ming, TENG Jing-jie, QIAO Peng. ANALYSIS OF INFLUENCE OF DOMESTIC WASTE CLASSIFICATION ON DEVELOPMENT OF WASTE INCINERATION POWER GENERATION INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 150-153,206. doi: 10.13205/j.hjgc.202106022
    [12]HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
    [13]HAN Xiao-dong, SUN Ye. SITE SELECTION OF WASTE TRANSFER STATION BASED ON NUMERICAL SIMULATIONS OF ODOR DISPERSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 130-135. doi: 10.13205/j.hjgc.202103018
    [14]HE Zhi-qiao, ZHANG Kang, LU Peng, GUAN Jian, LV Hong-kun, YING Guang-yao, LIU Ying-zu. COMBUSTION BEHAVIOR OF PYROLYSIS CHAR PRODUCED FROM MSW COMPONENTS BASED ON ACTIVITY AND POLLUTANT EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 172-178. doi: 10.13205/j.hjgc.202112026
    [15]WANG Zhao-jia, QIN Yu, GU Jun, CAI Wen-tao, ZHU Yan-chen, LI Qiang. RESEARCH PROGRESS OF DIOXIN CONTROL TECHNOLOGIES IN FLY ASH FROM DOMESTIC WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 116-123. doi: 10.13205/j.hjgc.202110016
    [16]WANG Xiao-cheng, GUO Ying, YAN Kai-hong. TREATMENT OF DOMESTIC WASTE BY ULTRA-HIGH TEMPERATURE SPONTANEOUS HEATING AEROBIC COMPOSTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 183-189. doi: 10.13205/j.hjgc.202010029
    [17]SUN Xiao-jie, WANG Chun-lian, LI Qian, ZHANG Hong-xia, YE Yu-hang. DEVELOPMENT AND EVOLUTION OF CHINA’S DOMESTIC WASTE CLASSIFICATION POLICY SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 65-70. doi: 10.13205/j.hjgc.202008011
    [18]WANG Hui, ZHANG Pu, ZHU Fa-qiang, ZHUANG Jian-heng. SIMULATION STUDY ON DIFFUSION AND COLLECTION CHARACTERISTICS OF HIGH TEMPERATURE SMOKE AND DUST IN BLAST FURNACE CAST HOUSE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 123-129. doi: 10.13205/j.hjgc.202011020
    [20]Ding Zhijiang Lu Mingyuan Xiao Lichun, . NUMERICAL SIMULATION METHOD OF GAS FLOW DISTRIBUTION IN ELECTROSTATIC PRECIPITATOR FOR CONVERTER GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 92-96. doi: 10.13205/j.hjgc.201504019
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.1 %FULLTEXT: 9.1 %META: 88.3 %META: 88.3 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.1 %其他: 12.1 %上海: 3.4 %上海: 3.4 %东莞: 1.9 %东莞: 1.9 %临汾: 0.4 %临汾: 0.4 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %保定: 0.4 %保定: 0.4 %北京: 10.6 %北京: 10.6 %十堰: 0.4 %十堰: 0.4 %南京: 0.8 %南京: 0.8 %南通: 0.4 %南通: 0.4 %厦门: 0.8 %厦门: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 1.5 %合肥: 1.5 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 1.1 %呼和浩特: 1.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %大同: 0.4 %大同: 0.4 %大连: 0.4 %大连: 0.4 %天津: 1.5 %天津: 1.5 %太原: 0.8 %太原: 0.8 %宁波: 0.8 %宁波: 0.8 %宜春: 1.5 %宜春: 1.5 %宣城: 0.8 %宣城: 0.8 %常德: 1.5 %常德: 1.5 %广州: 1.1 %广州: 1.1 %张家口: 0.8 %张家口: 0.8 %张家界: 0.4 %张家界: 0.4 %成都: 1.9 %成都: 1.9 %扬州: 0.4 %扬州: 0.4 %新乡: 0.4 %新乡: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.8 %昆明: 0.8 %晋中: 0.4 %晋中: 0.4 %晋城: 0.8 %晋城: 0.8 %杭州: 5.3 %杭州: 5.3 %株洲: 0.4 %株洲: 0.4 %武汉: 1.1 %武汉: 1.1 %深圳: 0.4 %深圳: 0.4 %湖州: 0.8 %湖州: 0.8 %湛江: 1.1 %湛江: 1.1 %漯河: 3.4 %漯河: 3.4 %潍坊: 0.4 %潍坊: 0.4 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 11.4 %芒廷维尤: 11.4 %芝加哥: 2.3 %芝加哥: 2.3 %苏州: 0.4 %苏州: 0.4 %苏黎世: 1.1 %苏黎世: 1.1 %萍乡: 0.4 %萍乡: 0.4 %蚌埠: 1.5 %蚌埠: 1.5 %衢州: 1.9 %衢州: 1.9 %西宁: 2.7 %西宁: 2.7 %西安: 1.5 %西安: 1.5 %贵阳: 1.9 %贵阳: 1.9 %运城: 1.9 %运城: 1.9 %遵义: 0.4 %遵义: 0.4 %郑州: 0.8 %郑州: 0.8 %重庆: 1.1 %重庆: 1.1 %金华: 0.4 %金华: 0.4 %长沙: 3.0 %长沙: 3.0 %长治: 0.4 %长治: 0.4 %青岛: 0.4 %青岛: 0.4 %香港: 0.8 %香港: 0.8 %马鞍山: 1.5 %马鞍山: 1.5 %鹰潭: 0.8 %鹰潭: 0.8 %其他上海东莞临汾乌鲁木齐保定北京十堰南京南通厦门台州合肥吉林呼和浩特哈尔滨大同大连天津太原宁波宜春宣城常德广州张家口张家界成都扬州新乡无锡昆明晋中晋城杭州株洲武汉深圳湖州湛江漯河潍坊绍兴芒廷维尤芝加哥苏州苏黎世萍乡蚌埠衢州西宁西安贵阳运城遵义郑州重庆金华长沙长治青岛香港马鞍山鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (232) PDF downloads(7) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return