Citation: | SUN Zhaoyun, DU Yaohui, PEI Lili, LIU Ying, WU Yulong. AN AIR QUALITY INDEX PREDICTION METHOD BASED ON INVERSE VARIANCE MULTI-MODEL FUSION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 197-204. doi: 10.13205/j.hjgc.202302026 |
[1] |
LIU H, YIN S, CHEN C, et al. Data multi-scale decomposition strategies for air pollution forecasting:a comprehensive review[J]. Journal of Cleaner Production, 2020, 277:124023.
|
[2] |
DINCER N G, AKKU Z. A new fuzzy time series model based on robust clustering for forecasting of air pollution[J]. Ecological Informatics, 2018, 43:157-164.
|
[3] |
MIRI M, ALAHABADI A, EHRAMPUSH M H, et al. Mortality and morbidity due to exposure to ambient particulate matter[J]. Ecotoxicology and Environmental Safety, 2018, 165:307-313.
|
[4] |
赵文成, 王访. 基于多尺度交叉趋势样本熵的城市空气质量指数分析[J]. 环境工程, 2020, 38(2):91-98.
|
[5] |
LIU H, YAN G X, DUAN Z, et al. Intelligent modeling strategies for forecasting air quality time series:a review[J]. Applied Soft Computing, 2021, 102:106957.
|
[6] |
QIAO X, YING Q, LI X, et al. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented Community Multiscale Air Quality model[J]. Science of the Total Environment, 2017, 612:462-471.
|
[7] |
JEONG J I, PARK R, WOO J H, et al. Source contributions to carbonaceous aerosol concentrations in Korea[J]. Atmospheric Environment, 2011, 45(5):1116-1125.
|
[8] |
LI C, HSU N C, TSAY S C. A study on the potential applications of satellite data in air quality monitoring and forecasting[J]. Atmospheric Environment, 2011, 45(22):3663-3675.
|
[9] |
史凯赫, 丁日佳, 吴利丰, 等.预测空气质量的新型灰色系统多变量模型构建:以石家庄市为例[J]. 系统科学学报, 2023(2):75-81.
|
[10] |
ZHANG L Y, LIN J N, QIU R Z, et al. Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model[J]. Ecological Indicators, 2018, 95:702-710.
|
[11] |
LIU B C, ARIHANT B, CHANG P C, et al. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR):a case study of Beijing-Tianjin-Shijiazhuang[J]. PLoS One, 2017, 12(7):0179763.
|
[12] |
徐乔王, 胡红萍, 白艳萍, 等. 基于MEA_SVM空气质量指数预测[J]. 重庆理工大学学报(自然科学版), 2019, 33(12):150-155.
|
[13] |
LI X, PENG L, YAO X J, et al. Long short-term memory neural network for air pollutant concentration predictions:method development and evaluation[J]. Environmental Pollution, 2017, 231:997-1004.
|
[14] |
SHARMA E, DEO R C, PRASAD R, et al. A hybrid air quality early-warning framework:an hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms[J]. Science of the Total Environment, 2020, 709:135934.
|
[15] |
YAN R, LIAO J Q, YANG J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2020, 169(4):114513.
|
[16] |
LIU B, YU X, CHEN J, et al. Air pollution concentration forecasting based on wavelet transform and combined weighting forecasting model[J]. Atmospheric Pollution Research, 2021, 12(8):101144.
|
[17] |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM:a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10):2222-2232.
|
[18] |
ZHANG B, ZHANG H, ZHAO G, et al. Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks[J]. Environmental Modelling and Software, 2019, 124:104600.
|
[19] |
HUANG G Y, LI X Y, ZHANG B, et al. PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition[J]. Science of the Total Environment, 2021, 768(3):144516.
|
[20] |
ALABDULRAZZAQ H, ALENEZI M, RAWAJFIH Y, et al. On the accuracy of ARIMA based prediction of COVID-19 spread[J]. Results in Physics, 27:104509.
|
[21] |
杜展鹏, 王明净, 严长安, 等. 基于绝对主成分-多元线性回归的滇池污染源解析[J]. 环境科学学报, 2020, 40(3):1130-1137.
|
[22] |
谭小钰, 刘芳, 马俊杰, 等. 基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J]. 太阳能学报, 2021, 42(10):42-48.
|
[23] |
裴莉莉, 孙朝云, 户媛姣, 等. 基于多特征因子的路用集料粒径计算神经网络模型[J]. 华南理工大学学报(自然科学版), 2020, 48(6):77-86.
|
[1] | LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028 |
[2] | ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012 |
[3] | ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003 |
[4] | DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023 |
[5] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[6] | ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022 |
[7] | XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017 |
[8] | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[9] | LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023 |
[10] | LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009 |
[11] | SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018 |
[12] | ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015 |
[13] | XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026 |
[14] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |
[15] | BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034 |
[16] | ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006 |
[20] | Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6. |
1. | 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 . ![]() | |
2. | 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 . ![]() | |
3. | 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 . ![]() | |
4. | 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 . ![]() | |
5. | 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 . ![]() | |
6. | 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 . ![]() | |
7. | 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . ![]() | |
8. | 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 . ![]() | |
9. | 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 . ![]() | |
10. | 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 . ![]() | |
11. | 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 . ![]() | |
12. | 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . ![]() | |
13. | 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 . ![]() |