Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
Citation: HE Zhuorong, LI Xianying, WEI Beibei. DETERMINATION OF COD IN WATER SAMPLES BY BiVO4/rGO BASED ON PHOTOELECTROCHEMICAL DETERMINATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 205-212. doi: 10.13205/j.hjgc.202302027

DETERMINATION OF COD IN WATER SAMPLES BY BiVO4/rGO BASED ON PHOTOELECTROCHEMICAL DETERMINATION

doi: 10.13205/j.hjgc.202302027
  • Received Date: 2021-12-07
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Accurate, timely and environmentally friendly detection of water Chemical oxygen demand has become an important research topic in the field of environmental monitoring. A visible-light-responsive BiVO4/rGO film electrode was prepared by solution combustion method and rotating coating method for the determination of COD. The structure of the composite electrode was investigated by X-ray diffraction (XRD), surface area analysis(BET) and scanning electron microscope analysis(SEM). The results showed that the substrate was completely covered by BiVO4/rGO. The photoelectric properties were tested by cyclic voltammetry(CV), photocurrent-time (I-t) method, and the best performance was obtained when the calcination temperature was 500℃, the doped rGO was 5 mL, and the coating thickness was 4 layers. The results showed that stable and reliable test results could be obtained in the condition of a working voltage of 1.0 V, supporting electrolyte of 0.1 mol/L Na2SO4, illumination intensity of 400 μW/cm2 and pH of 6~8. The determination range of COD by BiVO4/rGO film electrode was 12.18~719.8 mg/L, and there was a good linear relationship between the transfer net charge (Qnet) and the theoretical COD value. When it was applied to the determination of COD in real water samples, the steady photocurrent could be reached within 60 seconds. The results were in good agreement with the national standard method, and the relative deviation was less than 5%. Therefore, BiVO4/rGO coated electrode has the advantages of fast response, wide linear range and convenient operation, which can replace the traditional COD determination instrument.
  • [1]
    KANG Z F, HE Z X, WEN Y Z, et al. Smart COD sensor using UV-Vis spectroscopy against optical window surface contamination[J]. Measurement, 2022, 187:110125.
    [2]
    LI J W, TONG Y F, GUAN L, et al. A turbidity compensation method for COD measurements by UV-vis spectroscopy[J]. Optik, 2019, 186:129-136.
    [3]
    ZHOU B, BAI J, LI J. Applying nanophotoelectrocatalytic oxidation of organic pollutants to COD sensing[J]. Science, 2016, 1223:30-31.
    [4]
    MAHESKUMAR V, JIANG Z, LIN Y, et al. The structural and optical properties of Ag/Cu co-doped BiVO4 material:a density functional study[J]. Materials Letters, 2022, 315:131289.
    [5]
    LI Y P, SUN X L, TANG Y M, et al. Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite[J]. Materials Chemistry and Physics, 2021, 271:254-584.
    [6]
    CHEN Z H, MI N, HUANG L Q, et al. Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin[J]. Science of the Total Environment, 2022, 808:152083.
    [7]
    SAMSUDIN M F R, SUFIAN S. Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics[J]. Journal of Molecular Liquids, 2020, 314:113530.
    [8]
    冯艳, 王济奎, 张宝剑, 等. 基于氧化石墨烯-纳米镍修饰电极的化学耗氧量即时检测系统[J]. 分析化学, 2018, 46(7):1055-1061.
    [9]
    OUYANG K, YANG C, XU B Q, et al. Synthesis of novel ternary Ag/BiVO4/GO photocatalyst for degradation of oxytetracycline hydrochloride under visible light[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 625:126978.
    [10]
    MORAL R A I, QUINTANA M, LEYVA R R, et al. Novel and green synthesis of BiVO4 and GO/BiVO4 photocatalysts for efficient dyes degradation under blue LED illumination[J]. Ceramics International, 2022, 48(1):1264-1276.
    [11]
    WANG J Q, YAO N, LI M, et al. Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of chemical oxygen demand[J]. Microchimica Acta, 2015, 182:515-522.
    [12]
    KANGKUN N, PONCHIO C. Photoelectrodeposition of BiVO4 layer on FTO/WO3 photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications[J]. Applied Surface Science, 2020, 526:146686.
    [13]
    NAGABHUSHANA G P, TAVAKOLI A H, NAVROTSKY A. Energetics of bismuth vanadate[J]. Journal of Solid State Chemistry, 2015, 225:187-192.
    [14]
    李晓娜. BiVO4材料的改性及其光催化效能研究[J]. 分子科学学报, 2019, 35(3):242-247.
    [15]
    陈擘威,黄华康,毕于铁,等. 锌基复合气凝胶的制备与表征[J]. 精细化工,2015,32(5):487-490.
    [16]
    QIU Y C, LIU W, CHEN W, et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells[J]. Science Advances, 2016, 2:1501764.
    [17]
    杨喆, 何利华, 张丙青. 基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究[J]. 分析测试技术与仪器, 2021, 27(3):158-164.
    [18]
    HE Z T, LIU S, ZHONG Y, et al. Preparation of BiPO4/graphene photoelectrode and its photoelectrocatalyitic performance[J]. Chinese Journal of Catalysis,2020,41(2):302-311.
    [19]
    SILVA M R, LUCILHA A C, AFONSO R, et al. Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation[J]. Ionics, 2014, 20(1):105-113.
    [20]
    CAO D W, LI M, ZHU J F, et al. Enhancement of photoelectrochemical performance in ferroelectric films via the introduction of an Au buffer layer[J]. Journal of Semiconductors, 2021, 42(11):65-73.
    [21]
    LIU G Q, LI Y, YANG Y, et al. Anti-photocorrosive photoanode with RGO/PdS as hole extraction layer[J]. Science China Materials,2020,63(10):1939-1947.
    [22]
    欧盼盼, 韦富存, 吴叶宇, 等. 基于多孔二氧化钛-硒化镉量子点复合材料的光电化学传感器用于检测Hg2+[J]. 分析化学, 2021, 49(11):1897-1907.
    [23]
    SAITO R, MISEKI Y, SAYAMA K. Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting[J]. Journal of Photo-chemistry and Photobiology A:Chemistry, 2013, 258:51-60.
    [24]
    ZHANG S Q, ZHAO H J, JIANG D L, et al. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell[J]. Analytica Chimica Acta, 2004, 514:89-97.
    [25]
    环境保护部.水质化学需氧量的测定重铬酸盐法:GB 11914-1989[S]. 北京:中国环境出版社,1989.
  • Relative Articles

    [1]LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003
    [4]DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023
    [5]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [6]ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022
    [7]XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
    [8]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [9]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018
    [12]ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
    [13]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [14]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
    [15]BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034
    [16]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [20]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 .
    2. 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 .
    3. 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 .
    4. 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 .
    5. 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 .
    6. 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 .
    7. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    8. 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 .
    9. 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 .
    10. 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 .
    11. 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 .
    12. 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . 本站查看
    13. 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 85.6 %META: 85.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 3.4 %上海: 3.4 %东莞: 5.3 %东莞: 5.3 %临汾: 0.2 %临汾: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.3 %佛山: 0.3 %保定: 0.5 %保定: 0.5 %克拉玛依: 1.0 %克拉玛依: 1.0 %兰州: 0.8 %兰州: 0.8 %北京: 6.2 %北京: 6.2 %南京: 1.3 %南京: 1.3 %南充: 0.3 %南充: 0.3 %南昌: 0.8 %南昌: 0.8 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %喀什: 0.2 %喀什: 0.2 %大同: 0.2 %大同: 0.2 %大庆: 0.6 %大庆: 0.6 %大连: 0.3 %大连: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.6 %太原: 0.6 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %宝鸡: 1.3 %宝鸡: 1.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %庆阳: 0.3 %庆阳: 0.3 %张家口: 1.8 %张家口: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %拉萨: 0.3 %拉萨: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.9 %杭州: 3.9 %武汉: 1.8 %武汉: 1.8 %汉中: 0.3 %汉中: 0.3 %汕头: 0.2 %汕头: 0.2 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淮北: 0.3 %淮北: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 1.1 %温州: 1.1 %渭南: 0.5 %渭南: 0.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.6 %湛江: 0.6 %滨州: 0.2 %滨州: 0.2 %漯河: 1.9 %漯河: 1.9 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.8 %烟台: 0.8 %牛津: 0.2 %牛津: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %舟山: 0.5 %舟山: 0.5 %芒廷维尤: 10.2 %芒廷维尤: 10.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.5 %荆州: 0.5 %萨拉戈萨: 0.3 %萨拉戈萨: 0.3 %衡水: 0.8 %衡水: 0.8 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 1.0 %西安: 1.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 1.0 %长治: 1.0 %青岛: 1.5 %青岛: 1.5 %鹤壁: 0.5 %鹤壁: 0.5 %其他上海东莞临汾伊利诺伊州佛山保定克拉玛依兰州北京南京南充南昌台北台州合肥呼和浩特哈尔滨喀什大同大庆大连天津太原威海安康宝鸡宣城常州常德广州庆阳张家口成都扬州拉萨无锡昆明晋城朝阳杭州武汉汉中汕头沈阳洛阳济南济宁淮北深圳温州渭南湖州湘潭湛江滨州漯河潍坊烟台牛津盐城石家庄福州舟山芒廷维尤芝加哥苏州荆州萨拉戈萨衡水衢州襄阳西宁西安贵阳运城遵义邢台郑州重庆长春长沙长治青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads(4) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return