Citation: | HE Zhuorong, LI Xianying, WEI Beibei. DETERMINATION OF COD IN WATER SAMPLES BY BiVO4/rGO BASED ON PHOTOELECTROCHEMICAL DETERMINATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 205-212. doi: 10.13205/j.hjgc.202302027 |
[1] |
KANG Z F, HE Z X, WEN Y Z, et al. Smart COD sensor using UV-Vis spectroscopy against optical window surface contamination[J]. Measurement, 2022, 187:110125.
|
[2] |
LI J W, TONG Y F, GUAN L, et al. A turbidity compensation method for COD measurements by UV-vis spectroscopy[J]. Optik, 2019, 186:129-136.
|
[3] |
ZHOU B, BAI J, LI J. Applying nanophotoelectrocatalytic oxidation of organic pollutants to COD sensing[J]. Science, 2016, 1223:30-31.
|
[4] |
MAHESKUMAR V, JIANG Z, LIN Y, et al. The structural and optical properties of Ag/Cu co-doped BiVO4 material:a density functional study[J]. Materials Letters, 2022, 315:131289.
|
[5] |
LI Y P, SUN X L, TANG Y M, et al. Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite[J]. Materials Chemistry and Physics, 2021, 271:254-584.
|
[6] |
CHEN Z H, MI N, HUANG L Q, et al. Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin[J]. Science of the Total Environment, 2022, 808:152083.
|
[7] |
SAMSUDIN M F R, SUFIAN S. Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics[J]. Journal of Molecular Liquids, 2020, 314:113530.
|
[8] |
冯艳, 王济奎, 张宝剑, 等. 基于氧化石墨烯-纳米镍修饰电极的化学耗氧量即时检测系统[J]. 分析化学, 2018, 46(7):1055-1061.
|
[9] |
OUYANG K, YANG C, XU B Q, et al. Synthesis of novel ternary Ag/BiVO4/GO photocatalyst for degradation of oxytetracycline hydrochloride under visible light[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 625:126978.
|
[10] |
MORAL R A I, QUINTANA M, LEYVA R R, et al. Novel and green synthesis of BiVO4 and GO/BiVO4 photocatalysts for efficient dyes degradation under blue LED illumination[J]. Ceramics International, 2022, 48(1):1264-1276.
|
[11] |
WANG J Q, YAO N, LI M, et al. Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of chemical oxygen demand[J]. Microchimica Acta, 2015, 182:515-522.
|
[12] |
KANGKUN N, PONCHIO C. Photoelectrodeposition of BiVO4 layer on FTO/WO3 photoanodes for highly efficient photoelectrocatalytic chemical oxygen demand sensor applications[J]. Applied Surface Science, 2020, 526:146686.
|
[13] |
NAGABHUSHANA G P, TAVAKOLI A H, NAVROTSKY A. Energetics of bismuth vanadate[J]. Journal of Solid State Chemistry, 2015, 225:187-192.
|
[14] |
李晓娜. BiVO4材料的改性及其光催化效能研究[J]. 分子科学学报, 2019, 35(3):242-247.
|
[15] |
陈擘威,黄华康,毕于铁,等. 锌基复合气凝胶的制备与表征[J]. 精细化工,2015,32(5):487-490.
|
[16] |
QIU Y C, LIU W, CHEN W, et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells[J]. Science Advances, 2016, 2:1501764.
|
[17] |
杨喆, 何利华, 张丙青. 基于钒酸铋半导体材料的光电化学葡萄糖传感器的研究[J]. 分析测试技术与仪器, 2021, 27(3):158-164.
|
[18] |
HE Z T, LIU S, ZHONG Y, et al. Preparation of BiPO4/graphene photoelectrode and its photoelectrocatalyitic performance[J]. Chinese Journal of Catalysis,2020,41(2):302-311.
|
[19] |
SILVA M R, LUCILHA A C, AFONSO R, et al. Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation[J]. Ionics, 2014, 20(1):105-113.
|
[20] |
CAO D W, LI M, ZHU J F, et al. Enhancement of photoelectrochemical performance in ferroelectric films via the introduction of an Au buffer layer[J]. Journal of Semiconductors, 2021, 42(11):65-73.
|
[21] |
LIU G Q, LI Y, YANG Y, et al. Anti-photocorrosive photoanode with RGO/PdS as hole extraction layer[J]. Science China Materials,2020,63(10):1939-1947.
|
[22] |
欧盼盼, 韦富存, 吴叶宇, 等. 基于多孔二氧化钛-硒化镉量子点复合材料的光电化学传感器用于检测Hg2+[J]. 分析化学, 2021, 49(11):1897-1907.
|
[23] |
SAITO R, MISEKI Y, SAYAMA K. Photoanode characteristics of multi-layer composite BiVO4 thin film in a concentrated carbonate electrolyte solution for water splitting[J]. Journal of Photo-chemistry and Photobiology A:Chemistry, 2013, 258:51-60.
|
[24] |
ZHANG S Q, ZHAO H J, JIANG D L, et al. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell[J]. Analytica Chimica Acta, 2004, 514:89-97.
|
[25] |
环境保护部.水质化学需氧量的测定重铬酸盐法:GB 11914-1989[S]. 北京:中国环境出版社,1989.
|
[1] | LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028 |
[2] | ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012 |
[3] | ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003 |
[4] | DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023 |
[5] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[6] | ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022 |
[7] | XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017 |
[8] | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[9] | LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023 |
[10] | LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009 |
[11] | SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018 |
[12] | ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015 |
[13] | XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026 |
[14] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |
[15] | BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034 |
[16] | ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006 |
[20] | Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6. |
1. | 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 . ![]() | |
2. | 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 . ![]() | |
3. | 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 . ![]() | |
4. | 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 . ![]() | |
5. | 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 . ![]() | |
6. | 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 . ![]() | |
7. | 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . ![]() | |
8. | 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 . ![]() | |
9. | 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 . ![]() | |
10. | 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 . ![]() | |
11. | 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 . ![]() | |
12. | 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . ![]() | |
13. | 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 . ![]() |