Citation: | HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031 |
[1] |
CHEN M, XU P, ZENG G M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6, Part 1):745-755.
|
[2] |
WU Y, XU M, XUE J, et al. Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment[J]. ACS Omega, 2019, 4(1):1645-1651.
|
[3] |
RODRÍGUEZ-URIBE M L, PEÑA-CABRIALES J J, RIVERA-CRUZ M D C, et al. Native bacteria isolated from weathered petroleum oil-contaminated soils in Tabasco, Mexico, accelerate the degradation petroleum hydrocarbons in saline soil microcosms[J]. Environmental Technology & Innovation, 2021, 23:101781.
|
[4] |
田春雨. 湄洲湾水体石油烃含量、分布特征及其组分研究[D]. 厦门:厦门大学, 2009.
|
[5] |
OSSAI I C, AHMED A, HASSAN A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon:a review[J]. Environmental Technology & Innovation, 2020, 17:100526.
|
[6] |
GAUR V K, GUPTA S, PANDEY A. Evolution in mitigation approaches for petroleum oil-polluted environment:recent advances and future directions[J]. Environmental Science and Pollution Research, 2021. DOI: 10.1007/s11356-021-16047-y.
|
[7] |
AL-HAWASH A B, DRAGH M A, LI S, et al. Principles of microbial degradation of petroleum hydrocarbons in the environment[J]. The Egyptian Journal of Aquatic Research, 2018, 44(2):71-76.
|
[8] |
WILPISZESKI R L, AUFRECHT J A, RETTERER S T, et al. Soil aggregate microbial communities:towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14). DOI: 10.1128/AEM.00324-19.
|
[9] |
BAI X R, NIE M Q, DIWU Z J, et al. Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater:construction of bacterial consortium and their metabolic division of labor[J]. Bioresource Technology, 2022, 347:126377.
|
[10] |
LI X, HE W, DU M, et al. Design of a microbial remediation inoculation program for petroleum hydrocarbon contaminated sites based on degradation pathways[J]. International Journal of Environmental Research and Public Health, 2021, 18(16):8794.
|
[11] |
BAGI A, KNAPIK K, BAUSSANT T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes-Potential for use in detection of marine oil pollution[J]. Science of the Total Environment, 2022, 810:152238.
|
[12] |
HOANG S A, SARKAR B, SESHADRI B, et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments:a review[J]. Journal of Hazardous Materials, 2021, 416:125702.
|
[13] |
HEAD I M, JONES D M, RÖLING W F M. Marine microorganisms make a meal of oil[J]. Nature Reviews Microbiology, 2006, 4(3):173-182.
|
[14] |
PÉREZ-PANTOJA D, GONZÁLEZ B, PIEPER D H. Aerobic degradation of aromatic hydrocarbons[J]. Handbook of hydrocarbon and lipid microbiology(ed Rojo F), 2019:157-200.
|
[15] |
BOLL M. Dearomatizing Benzene Ring Reductases[J]. Microbial Physiology, 2005, 10(2/3/4):132-142.
|
[16] |
SHARMA A, SINGH S B, SHARMA R, et al. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition[J]. Journal of environmental management, 2016, 181:728-736.
|
[17] |
AL-HAWASH A B, AL-QURNAWI W S, ABBOOD H A, et al. Pyrene-Degrading Fungus Ceriporia lacerata RF-7 from contaminated soil in Iraq[J]. Polycyclic Aromatic Compounds, 2020(2):1-9.
|
[18] |
MARSTON C P, PEREIRA C, FERGUSON J, et al. Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis[J]. Carcinogenesis, 2001, 22(7):1077-1086.
|
[19] |
AGULLó L, CÁMARA B, MARTÍNEZ P, et al. Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress[J]. FEMS Microbiology Letters, 2007, 267(2):167-175.
|
[20] |
VARJANI S J, GNANSOUNOU E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs[J]. Bioresource Technology, 2017, 245:1258-1265.
|
[21] |
ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3):670-699.
|
[22] |
CHAN S I, CHEN K H C, YU S S F, et al. Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria[J]. Biochemistry, 2004, 43(15):4421-4430.
|
[23] |
MCDONALD I R, MIGUEZ C B, ROGGE G, et al. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments[J]. FEMS Microbiology Letters, 2006, 255(2):225-232.
|
[24] |
YONG N, FANG H, LI Y, et al. The genome of the moderate halophile amycolicicoccus subflavus DQS3-9A1T reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment[J]. PLos One, 2013, 8:e70986.
|
[25] |
ROJO F. Degradation of alkanes by bacteria[J]. Environ Microbiol, 2009, 11(10):2477-2490.
|
[26] |
RATAJCZAK A, GEISSDÖRFER W, HILLEN W. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Applied and Environmental Microbiology, 1998, 64(4):1175-1179.
|
[27] |
van BEILEN J B, FUNHOFF E G, van LOON A, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases[J]. Appl Environ Microbiol, 2006, 72(1):59-65.
|
[28] |
WANG X B, CHI C Q, NIE Y, et al. Degradation of petroleum hydrocarbons (C6~C40) and crude oil by a novel Dietzia strain[J]. Bioresource Technology, 2011, 102(17):7755-7761.
|
[29] |
LI L, LIU X Q, YANG W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase[J]. J Mol Biol, 2008, 376(2):453-465.
|
[30] |
THRONE-HOLST M, WENTZEL A, ELLINGSEN TROND E, et al. Identification of novel genes involved in long-chain n-Alkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied and Environmental Microbiology, 2007, 73(10):3327-3332.
|
[31] |
WILKES H, BUCKEL W, GOLDING B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Microbial Physiology, 2016, 26(1/2/3):138-151.
|
[32] |
JIANG Y, YANG X, LIU B, et al. Catechol 2, 3-dioxygenase from Pseudomonas sp. strain ND6:gene sequence and enzyme characterization[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(8):1798-1800.
|
[33] |
VON NETZER F, KUNTZE K, VOGT C, et al. Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments[J]. Microbial Physiology, 2016, 26(1/2/3):180-194.
|
[34] |
HEIDER J. Adding handles to unhandy substrates:anaerobic hydrocarbon activation mechanisms[J]. Curr Opin Chem Biol, 2007, 11(2):188-194.
|
[35] |
SEO J, KANG S I, RYU J Y, et al. Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4[J]. Applied Microbiology and Biotechnology, 2010, 86(5):1451-1462.
|
[36] |
AGBAJI J E, NWAICHI E O, ABU G O. Attenuation of petroleum hydrocarbon fractions using rhizobacterial isolates possessing alkB, C23O, and nahR genes for degradation of n-alkane and aromatics[J]. Journal of Environmental Science and Health, Part A, 2021, 56(6):635-645.
|
[37] |
PARK J W, CROWLEY D E. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils[J]. Applied microbiology and biotechnology, 2006, 72(6):1322-1329.
|
[38] |
SOWANI H, KULKARNI M, ZINJARDE S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11:cellular responses and degradation perspectives[J]. Environmental Pollution, 2020, 263:114538.
|
[39] |
DAS N, CHANDRAN P. Microbial degradation of petroleum hydrocarbon contaminants:an overview[J]. Biotechnol Res Int 2011, 2011:941810.
|
[40] |
JI Y R, MAO G W, WANG Y Y, et al. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases[J]. Frontiers in Microbiology, 2013, 4. DOI: 10.3389/fmicb.2013.00058.
|
[41] |
CABRAL L, GIOVANELLA P, PELLIZZER E P, et al. Microbial communities in petroleum-contaminated sites:structure and metabolisms[J]. Chemosphere, 2022, 286:131752.
|
[42] |
张腾飞, 黄玉杰, 王磊磊, 等. 正十二烷降解菌株的筛选及降解特性研究[J]. 环境科学与技术, 2021, 44(增刊2):238-244.
|
[43] |
SINGH J S, SENEVIRATNE G. Agro-environmental sustainability[M]. Springer, 2017.
|
[44] |
SLUIS M K, SAYAVEDRA-SOTO L A, ARP D J. Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'[J]. Microbiology (Reading), 2002, 148(Pt 11):3617-3629.
|
[45] |
FUNHOFF ENRICO G, BAUER U, GARCÍA-RUBIO I, et al. CYP153A6, a Soluble P450 oxygenase catalyzing terminal-alkane hydroxylation[J]. Journal of Bacteriology, 2006, 188(14):5220-5227.
|
[46] |
SAZYKIN I, MAKARENKO M, KHMELEVTSOVA L, et al. Cyclohexane, naphthalene, and diesel fuel increase oxidative stress, CYP153, sodA, and recA gene expression in Rhodococcus erythropolis[J]. Microbiologyopen, 2019, 8(9):e00855.
|
[47] |
RATAJCZAK A, GEISSDÖRFER W, HILLEN W. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Appl Environ Microbiol, 1998, 64(4):1175-1179.
|
[48] |
LIU C, WANG W, WU Y, et al. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5[J]. Environ Microbiol, 2011, 13(5):1168-1178.
|
[49] |
MINERDI D, SADEGHI S J, DI NARDO G, et al. CYP116B5:a new class Ⅶ catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes[J]. Mol Microbiol, 2015, 95(3):539-554.
|
[50] |
WATKINSON R J, MORGAN P. Physiology of aliphatic hydrocarbon-degrading microorganisms[J]. Physiology of biodegradative microorganisms, 1991,1(2):79-92.
|
[51] |
LIN H, LIU J Y, WANG H B, et al. Biocatalysis as an alternative for the production of chiral epoxides:a comparative review[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 72(3):77-89.
|
[52] |
WANG S, WANG D, YU Z C, et al. Advances in research on petroleum biodegradability in soil[J]. Environ Sci Process Impacts, 2021, 23(1):9-27.
|
[53] |
SALAMANCA D, KARANDE R, SCHMID A, et al. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100[J]. Appl Microbiol Biotechnol, 2015, 99(16):6889-6897.
|
[54] |
KAWAKAMI N, SHOJI O, WATANABE Y. Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes[J]. Angewandte Chemie, 2011, 123(23):5427-5430.
|
[55] |
GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369.
|
[56] |
PHALE P S, SHAH B A, MALHOTRA H. Variability in assembly of degradation operons for naphthalene and its derivative, carbaryl, suggests mobilization through horizontal gene transfer[J]. Genes, 2019, 10(8):569.
|
[57] |
JOUANNEAU Y, MEYER C. Purification and Characterization of an arene cis-dihydrodiol dehydrogenase endowed with broad substrate specificity toward polycyclic aromatic hydrocarbon dihydrodiols[J]. Applied and Environmental Microbiology, 2006, 72(7):4726-4734.
|
[58] |
HADDOCK J. Aerobic degradation of aromatic hydrocarbons:enzyme structures and catalytic mechanisms[M]. Handbook of Hydrocarbon and Lipid Microbiology, 2010.
|
[59] |
GIBSON D, KOCH J, KALLIO R. Oxidative degradation of aromatic hydrocarbons by microorganisms. Ⅰ. Enzymic formation of catechol from benzene[J]. Biochemistry, 1968, 7(7):2653-2662.
|
[60] |
LIANG C Y, HUANG Y, WANG H. pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria[J]. Applied and environmental microbiology, 2019, 85(3). DOI: 10.1128/AEM.02399-18.
|
[61] |
GOLUBEV S N, MURATOVA A Y, PANCHENKO L V, et al. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth[J]. Microbiological Research, 2021, 253:126885.
|
[62] |
LOZADA M, RIVA MERCADAL J P, GUERRERO L D, et al. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia[J]. BMC Microbiology, 2008, 8(1):50.
|
[63] |
VAILLANCOURT F H, BOLIN J T, ELTIS L D. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol, 2006, 41(4):241-267.
|
[64] |
KOVALEVA E G, NEIBERGALL M B, CHAKRABARTY S, et al. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases[J]. Accounts of Chemical Research, 2007, 40(7):475-483.
|
[65] |
吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J]. 微生物学通报, 2020, 47(10):3355-3368.
|
[66] |
MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. Microbial Physiology, 2016, 26(1/2/3):92-118.
|
[67] |
WILKES H, KüHNER S, BOLM C, et al. Formation of n-alkane-and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil[J]. Organic Geochemistry, 2003, 34(9):1313-1323.
|
[68] |
CHANDRA S, SHARMA R, SINGH K, et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon[J]. Annals of microbiology, 2013, 63(2):417-431.
|
[69] |
KNIEMEYER O, MUSAT F, SIEVERT S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7164):898-901.
|
[70] |
JI J H, ZHOU L, MBADINGA S M, et al. Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism[J]. AMB Express, 2020, 10(1):23.
|
[71] |
WAWRIK B, MENDIVELSO M, PARISI V A, et al. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin[J]. FEMS Microbiology Ecology, 2012, 81(1):26-42.
|
[72] |
SO CHI M, PHELPS CRAIG D, YOUNG L Y. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3[J]. Applied and Environmental Microbiology, 2003, 69(7):3892-3900.
|
[73] |
SO C M, YOUNG L. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J]. Applied and Environmental Microbiology, 1999, 65(7):2969-2976.
|
[74] |
BOLL M, ESTELMANN S, HEIDER J. Anaerobic degradation of hydrocarbons:mechanisms of hydrocarbon activation in the absence of oxygen[J]. 2020:3-29.
|
[75] |
ZEDELIUS J, RABUS R, GRUNDMANN O, et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation[J]. Environ Microbiol Rep, 2011, 3(1):125-135.
|
[76] |
WILKES H, BUCKEL W, GOLDING B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. J Mol Microbiol Biotechnol, 2016, 26(1/2/3):138-151.
|
[77] |
MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. Microbial Physiology, 2016, 26(1/2/3):92-118.
|
[78] |
VON NETZER F, PILLONI G, KLEINDIENST S, et al. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems[J]. Applied and Environmental Microbiology, 2013, 79(2):543-552.
|
[79] |
BOLL M, ESTELMANN S, HEIDER J. Catabolic pathways and enzymes involved in the anaerobic degradation of monocyclic aromatic compounds[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:85-133.
|
[80] |
TIERNEY M, YOUNG L Y. Anaerobic degradation of aromatic hydrocarbons[M]. Handbook of Hydrocarbon and Lipid Microbiology, 2010:925-934.
|
[81] |
KNIEMEYER O, HEIDER J. (S)-1-phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism[J]. Arch Microbiol, 2001, 176(1/2):129-135.
|
[82] |
ZHANG X, YOUNG L Y. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia[J]. Applied and Environmental Microbiology, 1997, 63(12):4759-4764.
|
[83] |
MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. J Mol Microbiol Biotechnol, 2016, 26(1/2/3):92-118.
|
[84] |
ABU LABAN N, SELESI D, RATTEI T, et al. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture[J]. Environmental Microbiology, 2010, 12(10):2783-2796.
|
[85] |
LUO F, GITIAFROZ R, DEVINE C E, et al. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation[J]. Applied and Environmental Microbiology, 2014, 80(14):4095-4107.
|
[86] |
DHAR K, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons:a comprehensive review[J]. Reviews of Environmental Contamination and Toxicology Volume 251, 2019:25-108.
|
[87] |
RABUS R, WILKES H. Functional genomics of sulfate-reducing bacteria degrading hydrocarbons[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:225-232.
|
[88] |
WARTELL B, BOUFADEL M, RODRIGUEZ-FREIRE L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons:a literature review[J]. International Biodeterioration & Biodegradation, 2021, 157:105156.
|
[89] |
GIEG L M, TOTH C R. Signature metabolite analysis to determine in situ anaerobic hydrocarbon biodegradation[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:361-390.
|
[90] |
FOGHT J. Anaerobic Biodegradation of Aromatic Hydrocarbons:Pathways and Prospects[J]. Microbial Physiology, 2008, 15(2/3):93-120.
|
[91] |
GAO H, WU M L, LIU H, et al. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function[J]. Environmental Pollution, 2022, 293:118511.
|
[92] |
LACZI K, ERDEINÉ KIS Á, SZILÁGYI Á, et al. New frontiers of anaerobic hydrocarbon biodegradation in the multi-omics era[J]. Frontiers in Microbiology, 2020, 11. DOI: 10.3389/fmicb.2020.590049.
|
[93] |
李伟, 印莉萍. 基因组学相关概念及其研究进展[J]. 生物学通报, 2000,35(11):1-3.
|
[94] |
JAISWAL S, SINGH D K, SHUKLA P. Gene editing and systems biology tools for pesticide bioremediation:a review[J]. Frontiers in Microbiology, 2019, 10.DOI: 10.3389/fmicb.2019.00087.
|
[95] |
CHEN H P, ZHU S H, CASABON I, et al. Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium[J]. Applied and Environmental Microbiology, 2012, 78(21):7798-7800.
|
[96] |
HE C, LI Y, HUANG C, et al. Genome sequence and metabolic analysis of a fluoranthene-degrading strain Pseudomonas aeruginosa DN1[J]. Frontiers in Microbiology, 2018,9:2595.
|
[97] |
NELSON K, WEINEL C, PAULSEN I, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440[J]. Environmental Microbiology, 2002, 4(12):799-808.
|
[98] |
FILONOV A, DELEGAN Y, PUNTUS I, et al. Complete genome sequence of Pseudomonas putida BS3701, a promising Polycyclic Aromatic Hydrocarbon-Degrading strain for bioremediation technologies[J]. Microbiology Resource Announcements, 2020, 9(40). DOI: 10.1128/MRA.00892-20.
|
[99] |
CHANDRAN H, MUKESH M, SHARMA K. Microbial biodiversity and bioremediation assessment through omics approaches[J]. Frontiers in Environmental Chemistry,2020. DOI: 10.3389/fenvc.2020.570326.
|
[100] |
ZHANG X, LIANG C, SONG J, et al. Transcriptome analyses suggest a molecular mechanism for the SIPC response of Amphibalanus amphitrite[J]. Biochemical and Biophysical Research Communications, 2020, 525(4):823-829.
|
[101] |
DAS D, MAWLONG G T, SARKI Y N, et al. Transcriptome analysis of crude oil degrading Pseudomonas aeruginosa strains for identification of potential genes involved in crude oil degradation[J]. Gene, 2020, 755:144909.
|
[102] |
LIU S, GUO C, LIN W, et al. Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B[J]. Science of the Total Environment, 2017, 609:1161-1171.
|
[103] |
PEIDRO-GUZMÁN H, PÉREZ-LLANO Y, GONZÁLEZ-ABRADELO D, et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions[J]. Environmental Microbiology, 2021, 23(7):3435-3459.
|
[104] |
NESVIZHSKII A I. Proteogenomics:concepts, applications and computational strategies[J]. Nature methods, 2014, 11(11):1114-1125.
|
[105] |
KIM S J, KWEON O, SUTHERLAND J B, et al. Dynamic response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon crude oil[J]. Applied and Environmental Microbiology, 2015, 81(13):4263-4276.
|
[106] |
KUREEL M K, GEED S R, RAI B N, et al. Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study[J]. Bioresource Technology, 2018, 266:335-342.
|
[107] |
BHAGANNA P, BIELECKA A, MOLINARI G, et al. Protective role of glycerol against benzene stress:insights from the Pseudomonas putida proteome[J]. Current Genetics, 2016, 62(2):419-429.
|
[108] |
KURA B. Deepwater horizon oil spill of 2010 in the Gulf of Mexico[J]. The Magazine for Environmental Managers, 2011(7):6-7.
|
[109] |
PARK H, MIN B, JANG Y, et al. Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613[J]. Applied Microbiology and Biotechnology, 2019, 103(19):8145-8155.
|
[110] |
MALIK G, ARORA R, CHATURVEDI R, et al. Implementation of genetic engineering and novel omics approaches to enhance bioremediation:a focused review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3):443-450.
|
[111] |
PARK H, CHOI I-G. Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons[J]. Applied Microbiology and Biotechnology, 2020, 104(16):6919-6928.
|
[112] |
BHATTACHARJEE G, GOHIL N, SINGH V. Synthetic biology approaches for bioremediation[M]. Bioremediation of Pollutants. Elsevier, 2020:303-312.
|
[113] |
JIMÉNEZ-DÍAZ V, PEDROZA-RODRÍGUEZ A M, RAMOS-MONROY O, et al. Synthetic biology:a new era in hydrocarbon bioremediation[J]. Processes, 2022, 10(4):712.
|
[114] |
WANG B, XU J, GAO J, et al. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules[J]. Journal of Hazardous Materials, 2019, 373:29-38.
|
[115] |
JAIN C K, GUPTA M, PRASAD Y, et al. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121:in silico insights[J]. J Mol Model, 2014, 20(7):2340.
|
[116] |
PATEL R, ZAVERI P, MUKHERJEE A, et al. Development of fluorescent protein-based biosensing strains:a new tool for the detection of aromatic hydrocarbon pollutants in the environment[J]. Ecotoxicology and Environmental Safety, 2019, 182:109450.
|
[117] |
MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends Biotechnol, 2019, 37(2):181-197.
|