Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
Citation: HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031

METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS

doi: 10.13205/j.hjgc.202302031
  • Received Date: 2022-04-28
    Available Online: 2023-05-25
  • Publish Date: 2023-02-01
  • Petroleum hydrocarbon contaminants are complex organic compounds, and it would cause great risk to the ecological environment and public health. Currently, microbial technology becomes a popular remediation technology for petroleum hydrocarbon contaminations. Microorganisms use the pollutants as a carbon source and metabolize and degrade it through a series of enzymatic catalysis. For increasing the application of microbial remediation of petroleum hydrocarbon pollution, the method of rational design of enzymes at key steps can be used to increase the microbial degradation rates of petroleum hydrocarbons. This review summarizes the main components and structures of petroleum hydrocarbons, metabolic pathways, functional genes and key enzyme types, as well as the application status of omics and synthetic biology technologies in the research of petroleum hydrocarbon degradation and metabolism mechanism, providing a reference for further improving the application prospects of microbial remediation technology in the field of petroleum hydrocarbon pollution.
  • [1]
    CHEN M, XU P, ZENG G M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6, Part 1):745-755.
    [2]
    WU Y, XU M, XUE J, et al. Characterization and enhanced degradation potentials of biosurfactant-producing bacteria isolated from a marine environment[J]. ACS Omega, 2019, 4(1):1645-1651.
    [3]
    RODRÍGUEZ-URIBE M L, PEÑA-CABRIALES J J, RIVERA-CRUZ M D C, et al. Native bacteria isolated from weathered petroleum oil-contaminated soils in Tabasco, Mexico, accelerate the degradation petroleum hydrocarbons in saline soil microcosms[J]. Environmental Technology & Innovation, 2021, 23:101781.
    [4]
    田春雨. 湄洲湾水体石油烃含量、分布特征及其组分研究[D]. 厦门:厦门大学, 2009.
    [5]
    OSSAI I C, AHMED A, HASSAN A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon:a review[J]. Environmental Technology & Innovation, 2020, 17:100526.
    [6]
    GAUR V K, GUPTA S, PANDEY A. Evolution in mitigation approaches for petroleum oil-polluted environment:recent advances and future directions[J]. Environmental Science and Pollution Research, 2021. DOI: 10.1007/s11356-021-16047-y.
    [7]
    AL-HAWASH A B, DRAGH M A, LI S, et al. Principles of microbial degradation of petroleum hydrocarbons in the environment[J]. The Egyptian Journal of Aquatic Research, 2018, 44(2):71-76.
    [8]
    WILPISZESKI R L, AUFRECHT J A, RETTERER S T, et al. Soil aggregate microbial communities:towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14). DOI: 10.1128/AEM.00324-19.
    [9]
    BAI X R, NIE M Q, DIWU Z J, et al. Simultaneous biodegradation of phenolics and petroleum hydrocarbons from semi-coking wastewater:construction of bacterial consortium and their metabolic division of labor[J]. Bioresource Technology, 2022, 347:126377.
    [10]
    LI X, HE W, DU M, et al. Design of a microbial remediation inoculation program for petroleum hydrocarbon contaminated sites based on degradation pathways[J]. International Journal of Environmental Research and Public Health, 2021, 18(16):8794.
    [11]
    BAGI A, KNAPIK K, BAUSSANT T. Abundance and diversity of n-alkane and PAH-degrading bacteria and their functional genes-Potential for use in detection of marine oil pollution[J]. Science of the Total Environment, 2022, 810:152238.
    [12]
    HOANG S A, SARKAR B, SESHADRI B, et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments:a review[J]. Journal of Hazardous Materials, 2021, 416:125702.
    [13]
    HEAD I M, JONES D M, RÖLING W F M. Marine microorganisms make a meal of oil[J]. Nature Reviews Microbiology, 2006, 4(3):173-182.
    [14]
    PÉREZ-PANTOJA D, GONZÁLEZ B, PIEPER D H. Aerobic degradation of aromatic hydrocarbons[J]. Handbook of hydrocarbon and lipid microbiology(ed Rojo F), 2019:157-200.
    [15]
    BOLL M. Dearomatizing Benzene Ring Reductases[J]. Microbial Physiology, 2005, 10(2/3/4):132-142.
    [16]
    SHARMA A, SINGH S B, SHARMA R, et al. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition[J]. Journal of environmental management, 2016, 181:728-736.
    [17]
    AL-HAWASH A B, AL-QURNAWI W S, ABBOOD H A, et al. Pyrene-Degrading Fungus Ceriporia lacerata RF-7 from contaminated soil in Iraq[J]. Polycyclic Aromatic Compounds, 2020(2):1-9.
    [18]
    MARSTON C P, PEREIRA C, FERGUSON J, et al. Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis[J]. Carcinogenesis, 2001, 22(7):1077-1086.
    [19]
    AGULLó L, CÁMARA B, MARTÍNEZ P, et al. Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress[J]. FEMS Microbiology Letters, 2007, 267(2):167-175.
    [20]
    VARJANI S J, GNANSOUNOU E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs[J]. Bioresource Technology, 2017, 245:1258-1265.
    [21]
    ABBASIAN F, LOCKINGTON R, MALLAVARAPU M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3):670-699.
    [22]
    CHAN S I, CHEN K H C, YU S S F, et al. Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria[J]. Biochemistry, 2004, 43(15):4421-4430.
    [23]
    MCDONALD I R, MIGUEZ C B, ROGGE G, et al. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments[J]. FEMS Microbiology Letters, 2006, 255(2):225-232.
    [24]
    YONG N, FANG H, LI Y, et al. The genome of the moderate halophile amycolicicoccus subflavus DQS3-9A1T reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment[J]. PLos One, 2013, 8:e70986.
    [25]
    ROJO F. Degradation of alkanes by bacteria[J]. Environ Microbiol, 2009, 11(10):2477-2490.
    [26]
    RATAJCZAK A, GEISSDÖRFER W, HILLEN W. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Applied and Environmental Microbiology, 1998, 64(4):1175-1179.
    [27]
    van BEILEN J B, FUNHOFF E G, van LOON A, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases[J]. Appl Environ Microbiol, 2006, 72(1):59-65.
    [28]
    WANG X B, CHI C Q, NIE Y, et al. Degradation of petroleum hydrocarbons (C6~C40) and crude oil by a novel Dietzia strain[J]. Bioresource Technology, 2011, 102(17):7755-7761.
    [29]
    LI L, LIU X Q, YANG W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN:unveiling the long-chain alkane hydroxylase[J]. J Mol Biol, 2008, 376(2):453-465.
    [30]
    THRONE-HOLST M, WENTZEL A, ELLINGSEN TROND E, et al. Identification of novel genes involved in long-chain n-Alkane degradation by Acinetobacter sp. strain DSM 17874[J]. Applied and Environmental Microbiology, 2007, 73(10):3327-3332.
    [31]
    WILKES H, BUCKEL W, GOLDING B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. Microbial Physiology, 2016, 26(1/2/3):138-151.
    [32]
    JIANG Y, YANG X, LIU B, et al. Catechol 2, 3-dioxygenase from Pseudomonas sp. strain ND6:gene sequence and enzyme characterization[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(8):1798-1800.
    [33]
    VON NETZER F, KUNTZE K, VOGT C, et al. Functional gene markers for fumarate-adding and dearomatizing key enzymes in anaerobic aromatic hydrocarbon degradation in terrestrial environments[J]. Microbial Physiology, 2016, 26(1/2/3):180-194.
    [34]
    HEIDER J. Adding handles to unhandy substrates:anaerobic hydrocarbon activation mechanisms[J]. Curr Opin Chem Biol, 2007, 11(2):188-194.
    [35]
    SEO J, KANG S I, RYU J Y, et al. Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4[J]. Applied Microbiology and Biotechnology, 2010, 86(5):1451-1462.
    [36]
    AGBAJI J E, NWAICHI E O, ABU G O. Attenuation of petroleum hydrocarbon fractions using rhizobacterial isolates possessing alkB, C23O, and nahR genes for degradation of n-alkane and aromatics[J]. Journal of Environmental Science and Health, Part A, 2021, 56(6):635-645.
    [37]
    PARK J W, CROWLEY D E. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils[J]. Applied microbiology and biotechnology, 2006, 72(6):1322-1329.
    [38]
    SOWANI H, KULKARNI M, ZINJARDE S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11:cellular responses and degradation perspectives[J]. Environmental Pollution, 2020, 263:114538.
    [39]
    DAS N, CHANDRAN P. Microbial degradation of petroleum hydrocarbon contaminants:an overview[J]. Biotechnol Res Int 2011, 2011:941810.
    [40]
    JI Y R, MAO G W, WANG Y Y, et al. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases[J]. Frontiers in Microbiology, 2013, 4. DOI: 10.3389/fmicb.2013.00058.
    [41]
    CABRAL L, GIOVANELLA P, PELLIZZER E P, et al. Microbial communities in petroleum-contaminated sites:structure and metabolisms[J]. Chemosphere, 2022, 286:131752.
    [42]
    张腾飞, 黄玉杰, 王磊磊, 等. 正十二烷降解菌株的筛选及降解特性研究[J]. 环境科学与技术, 2021, 44(增刊2):238-244.
    [43]
    SINGH J S, SENEVIRATNE G. Agro-environmental sustainability[M]. Springer, 2017.
    [44]
    SLUIS M K, SAYAVEDRA-SOTO L A, ARP D J. Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'[J]. Microbiology (Reading), 2002, 148(Pt 11):3617-3629.
    [45]
    FUNHOFF ENRICO G, BAUER U, GARCÍA-RUBIO I, et al. CYP153A6, a Soluble P450 oxygenase catalyzing terminal-alkane hydroxylation[J]. Journal of Bacteriology, 2006, 188(14):5220-5227.
    [46]
    SAZYKIN I, MAKARENKO M, KHMELEVTSOVA L, et al. Cyclohexane, naphthalene, and diesel fuel increase oxidative stress, CYP153, sodA, and recA gene expression in Rhodococcus erythropolis[J]. Microbiologyopen, 2019, 8(9):e00855.
    [47]
    RATAJCZAK A, GEISSDÖRFER W, HILLEN W. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases[J]. Appl Environ Microbiol, 1998, 64(4):1175-1179.
    [48]
    LIU C, WANG W, WU Y, et al. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5[J]. Environ Microbiol, 2011, 13(5):1168-1178.
    [49]
    MINERDI D, SADEGHI S J, DI NARDO G, et al. CYP116B5:a new class Ⅶ catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes[J]. Mol Microbiol, 2015, 95(3):539-554.
    [50]
    WATKINSON R J, MORGAN P. Physiology of aliphatic hydrocarbon-degrading microorganisms[J]. Physiology of biodegradative microorganisms, 1991,1(2):79-92.
    [51]
    LIN H, LIU J Y, WANG H B, et al. Biocatalysis as an alternative for the production of chiral epoxides:a comparative review[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 72(3):77-89.
    [52]
    WANG S, WANG D, YU Z C, et al. Advances in research on petroleum biodegradability in soil[J]. Environ Sci Process Impacts, 2021, 23(1):9-27.
    [53]
    SALAMANCA D, KARANDE R, SCHMID A, et al. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100[J]. Appl Microbiol Biotechnol, 2015, 99(16):6889-6897.
    [54]
    KAWAKAMI N, SHOJI O, WATANABE Y. Use of perfluorocarboxylic acids to trick cytochrome P450BM3 into initiating the hydroxylation of gaseous alkanes[J]. Angewandte Chemie, 2011, 123(23):5427-5430.
    [55]
    GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369.
    [56]
    PHALE P S, SHAH B A, MALHOTRA H. Variability in assembly of degradation operons for naphthalene and its derivative, carbaryl, suggests mobilization through horizontal gene transfer[J]. Genes, 2019, 10(8):569.
    [57]
    JOUANNEAU Y, MEYER C. Purification and Characterization of an arene cis-dihydrodiol dehydrogenase endowed with broad substrate specificity toward polycyclic aromatic hydrocarbon dihydrodiols[J]. Applied and Environmental Microbiology, 2006, 72(7):4726-4734.
    [58]
    HADDOCK J. Aerobic degradation of aromatic hydrocarbons:enzyme structures and catalytic mechanisms[M]. Handbook of Hydrocarbon and Lipid Microbiology, 2010.
    [59]
    GIBSON D, KOCH J, KALLIO R. Oxidative degradation of aromatic hydrocarbons by microorganisms. Ⅰ. Enzymic formation of catechol from benzene[J]. Biochemistry, 1968, 7(7):2653-2662.
    [60]
    LIANG C Y, HUANG Y, WANG H. pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria[J]. Applied and environmental microbiology, 2019, 85(3). DOI: 10.1128/AEM.02399-18.
    [61]
    GOLUBEV S N, MURATOVA A Y, PANCHENKO L V, et al. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth[J]. Microbiological Research, 2021, 253:126885.
    [62]
    LOZADA M, RIVA MERCADAL J P, GUERRERO L D, et al. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia[J]. BMC Microbiology, 2008, 8(1):50.
    [63]
    VAILLANCOURT F H, BOLIN J T, ELTIS L D. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol, 2006, 41(4):241-267.
    [64]
    KOVALEVA E G, NEIBERGALL M B, CHAKRABARTY S, et al. Finding intermediates in the O2 activation pathways of non-heme iron oxygenases[J]. Accounts of Chemical Research, 2007, 40(7):475-483.
    [65]
    吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J]. 微生物学通报, 2020, 47(10):3355-3368.
    [66]
    MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. Microbial Physiology, 2016, 26(1/2/3):92-118.
    [67]
    WILKES H, KüHNER S, BOLM C, et al. Formation of n-alkane-and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil[J]. Organic Geochemistry, 2003, 34(9):1313-1323.
    [68]
    CHANDRA S, SHARMA R, SINGH K, et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon[J]. Annals of microbiology, 2013, 63(2):417-431.
    [69]
    KNIEMEYER O, MUSAT F, SIEVERT S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7164):898-901.
    [70]
    JI J H, ZHOU L, MBADINGA S M, et al. Methanogenic biodegradation of C9 to C12n-alkanes initiated by Smithella via fumarate addition mechanism[J]. AMB Express, 2020, 10(1):23.
    [71]
    WAWRIK B, MENDIVELSO M, PARISI V A, et al. Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin[J]. FEMS Microbiology Ecology, 2012, 81(1):26-42.
    [72]
    SO CHI M, PHELPS CRAIG D, YOUNG L Y. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3[J]. Applied and Environmental Microbiology, 2003, 69(7):3892-3900.
    [73]
    SO C M, YOUNG L. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J]. Applied and Environmental Microbiology, 1999, 65(7):2969-2976.
    [74]
    BOLL M, ESTELMANN S, HEIDER J. Anaerobic degradation of hydrocarbons:mechanisms of hydrocarbon activation in the absence of oxygen[J]. 2020:3-29.
    [75]
    ZEDELIUS J, RABUS R, GRUNDMANN O, et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation[J]. Environ Microbiol Rep, 2011, 3(1):125-135.
    [76]
    WILKES H, BUCKEL W, GOLDING B T, et al. Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria[J]. J Mol Microbiol Biotechnol, 2016, 26(1/2/3):138-151.
    [77]
    MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. Microbial Physiology, 2016, 26(1/2/3):92-118.
    [78]
    VON NETZER F, PILLONI G, KLEINDIENST S, et al. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems[J]. Applied and Environmental Microbiology, 2013, 79(2):543-552.
    [79]
    BOLL M, ESTELMANN S, HEIDER J. Catabolic pathways and enzymes involved in the anaerobic degradation of monocyclic aromatic compounds[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:85-133.
    [80]
    TIERNEY M, YOUNG L Y. Anaerobic degradation of aromatic hydrocarbons[M]. Handbook of Hydrocarbon and Lipid Microbiology, 2010:925-934.
    [81]
    KNIEMEYER O, HEIDER J. (S)-1-phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism[J]. Arch Microbiol, 2001, 176(1/2):129-135.
    [82]
    ZHANG X, YOUNG L Y. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia[J]. Applied and Environmental Microbiology, 1997, 63(12):4759-4764.
    [83]
    MECKENSTOCK R U, BOLL M, MOUTTAKI H, et al. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons[J]. J Mol Microbiol Biotechnol, 2016, 26(1/2/3):92-118.
    [84]
    ABU LABAN N, SELESI D, RATTEI T, et al. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture[J]. Environmental Microbiology, 2010, 12(10):2783-2796.
    [85]
    LUO F, GITIAFROZ R, DEVINE C E, et al. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation[J]. Applied and Environmental Microbiology, 2014, 80(14):4095-4107.
    [86]
    DHAR K, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons:a comprehensive review[J]. Reviews of Environmental Contamination and Toxicology Volume 251, 2019:25-108.
    [87]
    RABUS R, WILKES H. Functional genomics of sulfate-reducing bacteria degrading hydrocarbons[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:225-232.
    [88]
    WARTELL B, BOUFADEL M, RODRIGUEZ-FREIRE L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons:a literature review[J]. International Biodeterioration & Biodegradation, 2021, 157:105156.
    [89]
    GIEG L M, TOTH C R. Signature metabolite analysis to determine in situ anaerobic hydrocarbon biodegradation[J]. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 2020:361-390.
    [90]
    FOGHT J. Anaerobic Biodegradation of Aromatic Hydrocarbons:Pathways and Prospects[J]. Microbial Physiology, 2008, 15(2/3):93-120.
    [91]
    GAO H, WU M L, LIU H, et al. Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function[J]. Environmental Pollution, 2022, 293:118511.
    [92]
    LACZI K, ERDEINÉ KIS Á, SZILÁGYI Á, et al. New frontiers of anaerobic hydrocarbon biodegradation in the multi-omics era[J]. Frontiers in Microbiology, 2020, 11. DOI: 10.3389/fmicb.2020.590049.
    [93]
    李伟, 印莉萍. 基因组学相关概念及其研究进展[J]. 生物学通报, 2000,35(11):1-3.
    [94]
    JAISWAL S, SINGH D K, SHUKLA P. Gene editing and systems biology tools for pesticide bioremediation:a review[J]. Frontiers in Microbiology, 2019, 10.DOI: 10.3389/fmicb.2019.00087.
    [95]
    CHEN H P, ZHU S H, CASABON I, et al. Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium[J]. Applied and Environmental Microbiology, 2012, 78(21):7798-7800.
    [96]
    HE C, LI Y, HUANG C, et al. Genome sequence and metabolic analysis of a fluoranthene-degrading strain Pseudomonas aeruginosa DN1[J]. Frontiers in Microbiology, 2018,9:2595.
    [97]
    NELSON K, WEINEL C, PAULSEN I, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440[J]. Environmental Microbiology, 2002, 4(12):799-808.
    [98]
    FILONOV A, DELEGAN Y, PUNTUS I, et al. Complete genome sequence of Pseudomonas putida BS3701, a promising Polycyclic Aromatic Hydrocarbon-Degrading strain for bioremediation technologies[J]. Microbiology Resource Announcements, 2020, 9(40). DOI: 10.1128/MRA.00892-20.
    [99]
    CHANDRAN H, MUKESH M, SHARMA K. Microbial biodiversity and bioremediation assessment through omics approaches[J]. Frontiers in Environmental Chemistry,2020. DOI: 10.3389/fenvc.2020.570326.
    [100]
    ZHANG X, LIANG C, SONG J, et al. Transcriptome analyses suggest a molecular mechanism for the SIPC response of Amphibalanus amphitrite[J]. Biochemical and Biophysical Research Communications, 2020, 525(4):823-829.
    [101]
    DAS D, MAWLONG G T, SARKI Y N, et al. Transcriptome analysis of crude oil degrading Pseudomonas aeruginosa strains for identification of potential genes involved in crude oil degradation[J]. Gene, 2020, 755:144909.
    [102]
    LIU S, GUO C, LIN W, et al. Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B[J]. Science of the Total Environment, 2017, 609:1161-1171.
    [103]
    PEIDRO-GUZMÁN H, PÉREZ-LLANO Y, GONZÁLEZ-ABRADELO D, et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions[J]. Environmental Microbiology, 2021, 23(7):3435-3459.
    [104]
    NESVIZHSKII A I. Proteogenomics:concepts, applications and computational strategies[J]. Nature methods, 2014, 11(11):1114-1125.
    [105]
    KIM S J, KWEON O, SUTHERLAND J B, et al. Dynamic response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon crude oil[J]. Applied and Environmental Microbiology, 2015, 81(13):4263-4276.
    [106]
    KUREEL M K, GEED S R, RAI B N, et al. Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study[J]. Bioresource Technology, 2018, 266:335-342.
    [107]
    BHAGANNA P, BIELECKA A, MOLINARI G, et al. Protective role of glycerol against benzene stress:insights from the Pseudomonas putida proteome[J]. Current Genetics, 2016, 62(2):419-429.
    [108]
    KURA B. Deepwater horizon oil spill of 2010 in the Gulf of Mexico[J]. The Magazine for Environmental Managers, 2011(7):6-7.
    [109]
    PARK H, MIN B, JANG Y, et al. Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613[J]. Applied Microbiology and Biotechnology, 2019, 103(19):8145-8155.
    [110]
    MALIK G, ARORA R, CHATURVEDI R, et al. Implementation of genetic engineering and novel omics approaches to enhance bioremediation:a focused review[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3):443-450.
    [111]
    PARK H, CHOI I-G. Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons[J]. Applied Microbiology and Biotechnology, 2020, 104(16):6919-6928.
    [112]
    BHATTACHARJEE G, GOHIL N, SINGH V. Synthetic biology approaches for bioremediation[M]. Bioremediation of Pollutants. Elsevier, 2020:303-312.
    [113]
    JIMÉNEZ-DÍAZ V, PEDROZA-RODRÍGUEZ A M, RAMOS-MONROY O, et al. Synthetic biology:a new era in hydrocarbon bioremediation[J]. Processes, 2022, 10(4):712.
    [114]
    WANG B, XU J, GAO J, et al. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules[J]. Journal of Hazardous Materials, 2019, 373:29-38.
    [115]
    JAIN C K, GUPTA M, PRASAD Y, et al. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121:in silico insights[J]. J Mol Model, 2014, 20(7):2340.
    [116]
    PATEL R, ZAVERI P, MUKHERJEE A, et al. Development of fluorescent protein-based biosensing strains:a new tool for the detection of aromatic hydrocarbon pollutants in the environment[J]. Ecotoxicology and Environmental Safety, 2019, 182:109450.
    [117]
    MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends Biotechnol, 2019, 37(2):181-197.
  • Relative Articles

    [1]LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028
    [2]ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
    [3]ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003
    [4]DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023
    [5]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [6]ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022
    [7]XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017
    [8]LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
    [9]LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018
    [12]ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015
    [13]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [14]LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003
    [15]BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034
    [16]ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006
    [20]Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6.
  • Cited by

    Periodical cited type(13)

    1. 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 .
    2. 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 .
    3. 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 .
    4. 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 .
    5. 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 .
    6. 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 .
    7. 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . 本站查看
    8. 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 .
    9. 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 .
    10. 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 .
    11. 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 .
    12. 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . 本站查看
    13. 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.8 %FULLTEXT: 11.8 %META: 85.6 %META: 85.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.6 %其他: 12.6 %上海: 3.4 %上海: 3.4 %东莞: 5.3 %东莞: 5.3 %临汾: 0.2 %临汾: 0.2 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %佛山: 0.3 %佛山: 0.3 %保定: 0.5 %保定: 0.5 %克拉玛依: 1.0 %克拉玛依: 1.0 %兰州: 0.8 %兰州: 0.8 %北京: 6.2 %北京: 6.2 %南京: 1.3 %南京: 1.3 %南充: 0.3 %南充: 0.3 %南昌: 0.8 %南昌: 0.8 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %喀什: 0.2 %喀什: 0.2 %大同: 0.2 %大同: 0.2 %大庆: 0.6 %大庆: 0.6 %大连: 0.3 %大连: 0.3 %天津: 1.6 %天津: 1.6 %太原: 0.6 %太原: 0.6 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %宝鸡: 1.3 %宝鸡: 1.3 %宣城: 0.2 %宣城: 0.2 %常州: 0.3 %常州: 0.3 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %庆阳: 0.3 %庆阳: 0.3 %张家口: 1.8 %张家口: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 0.2 %扬州: 0.2 %拉萨: 0.3 %拉萨: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.0 %昆明: 1.0 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.5 %朝阳: 0.5 %杭州: 3.9 %杭州: 3.9 %武汉: 1.8 %武汉: 1.8 %汉中: 0.3 %汉中: 0.3 %汕头: 0.2 %汕头: 0.2 %沈阳: 1.0 %沈阳: 1.0 %洛阳: 1.6 %洛阳: 1.6 %济南: 0.6 %济南: 0.6 %济宁: 0.2 %济宁: 0.2 %淮北: 0.3 %淮北: 0.3 %深圳: 0.6 %深圳: 0.6 %温州: 1.1 %温州: 1.1 %渭南: 0.5 %渭南: 0.5 %湖州: 0.8 %湖州: 0.8 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.6 %湛江: 0.6 %滨州: 0.2 %滨州: 0.2 %漯河: 1.9 %漯河: 1.9 %潍坊: 3.1 %潍坊: 3.1 %烟台: 0.8 %烟台: 0.8 %牛津: 0.2 %牛津: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.1 %福州: 1.1 %舟山: 0.5 %舟山: 0.5 %芒廷维尤: 10.2 %芒廷维尤: 10.2 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.3 %苏州: 0.3 %荆州: 0.5 %荆州: 0.5 %萨拉戈萨: 0.3 %萨拉戈萨: 0.3 %衡水: 0.8 %衡水: 0.8 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 3.1 %西宁: 3.1 %西安: 1.0 %西安: 1.0 %贵阳: 0.8 %贵阳: 0.8 %运城: 1.0 %运城: 1.0 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %郑州: 2.1 %郑州: 2.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.2 %长春: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 1.0 %长治: 1.0 %青岛: 1.5 %青岛: 1.5 %鹤壁: 0.5 %鹤壁: 0.5 %其他上海东莞临汾伊利诺伊州佛山保定克拉玛依兰州北京南京南充南昌台北台州合肥呼和浩特哈尔滨喀什大同大庆大连天津太原威海安康宝鸡宣城常州常德广州庆阳张家口成都扬州拉萨无锡昆明晋城朝阳杭州武汉汉中汕头沈阳洛阳济南济宁淮北深圳温州渭南湖州湘潭湛江滨州漯河潍坊烟台牛津盐城石家庄福州舟山芒廷维尤芝加哥苏州荆州萨拉戈萨衡水衢州襄阳西宁西安贵阳运城遵义邢台郑州重庆长春长沙长治青岛鹤壁

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (526) PDF downloads(17) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return