Citation: | WANG Yuan, GUO Huajun, SHAO Yan, LIU Zihao, XIANG Hao, HU Guofeng, LI Honghu, HU Jiangjun. REMOVAL OF ELEMENTAL MERCURY USING MAGNETIC ADSORBENT PREPARED FROM SLUDGE FLOCCULATED WITH FERROUS SULFATE BY Mn ACTIVATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 74-83. doi: 10.13205/j.hjgc.202303010 |
[1] |
YANG Y J, LIU J, WANG Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Progress in Energy and Combustion Science, 2020, 79:100844.
|
[2] |
YANG S J, GUO Y F, YAN N Q, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):698-708.
|
[3] |
姬丽琴, 齐永新, 周林成, 等. 磁性微/纳米材料吸附环境污染物的研究进展[J]. 化工新型材料, 2011, 39(11):32-35.
|
[4] |
DONG L, HUANG Y J, CHEN H, et al. Magnetic γFe2O3loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy & Fuels, 2019, 33(8):7522-7533.
|
[5] |
ZENG X B, XU Y, ZHANG B, et al. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma[J]. Chemical Engineering Journal, 2017, 309:503-512.
|
[6] |
YANG S J, GUO Y F, YAN N Q, et al. Nanosized cation-deficient Fe-Ti spinel:a novel magnetic sorbent for elemental mercury capture from flue gas[J]. ACS Applied Materials & Interfaces, 2011, 3(2):209-217.
|
[7] |
YANG S J, GUO Y F, YAN N Q, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1):508-515.
|
[8] |
YANG S J, YAN N Q, GUO Y F, et al. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-δO4[J]. Environmental Science & Technology, 2011, 45(4):1540-1546.
|
[9] |
ZHANG Z H, WU J, LI B, et al. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chemical Engineering Journal, 2019, 375:121946.
|
[10] |
林子增,黄瑛,乔红杰,等. 城市污水厂污泥化学调理深度脱水技术述评[J]. 应用化工, 2016, 45(6):1159-1162.
|
[11] |
YANG X, XU G R, YU H R, et al. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology, 2016, 211:566-573.
|
[12] |
WANG Y, LI H H, HE Z, et al. Removal of elemental mercury from flue gas using the magnetic Fe-containing carbon prepared from the sludge flocculated with ferrous sulfate[J]. Environmental Science and Pollution Research, 2020, 27:30254-30264.
|
[13] |
WANG Y, LI H H, SHAO Y, et al. Removal of elemental mercury using magnetic Fe-containing carbon prepared from sludge flocculated with ferrous sulfate by zinc chloride activation[J]. Journal of the Energy Institute, 2021, 98:98-106.
|
[14] |
YANG Y J, LIU J, WANG Z, et al. Interface reaction activity of recyclable and regenerable Cu-Mn spinel-type sorbent for Hg0 capture from flue gas[J]. Chemical Engineering Journal, 2019, 372:697-707.
|
[15] |
吕浩. 活性炭喷射耦合除尘器协同脱除燃煤烟气有机污染物/汞/CPM研究[D]. 南京:东南大学,2021.
|
[16] |
LIAO Y, CHEN D, ZOU S J, et al. A recyclable naturally derived magnetic pyrrhotite for elemental mercury recovery from the flue gas[J]. Environmental Science & Technology, 2016, 50:10562-10569.
|
[17] |
杨建平. 可循环再生磁珠吸附剂脱汞及其反应机理研究[D]. 武汉:华中科技大学, 2017.
|
[18] |
LI H H, WANG S K, WANG X, et al. FeCl3-modified Co-Ce oxides catalysts for mercury removal from coal-fired flue gas[J]. Chemical Papers, 2017, 71(12):2545-2555.
|
[19] |
XU Y, LUO G Q, PANG Q C, et al. Adsorption and catalytic oxidation elemental mercury over regenerable magnetic Fe-Ce mixed oxides modified by non-thermal plasma treatment[J]. Chemical Engineering Journal, 2019, 358:1454-1463.
|
[20] |
TAO S S, LI C T, FAN X P, et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chemical Engineering Journal, 2012. 210, 547-56.
|
[21] |
LI H L, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219:319-326.
|
[22] |
LI H H, WANG S K, WANG X, et al. Catalytic oxidation of Hg0 in flue gas over Ce modified TiO2 supported Co-Mn catalysts:characterization, the effect of gas composition and co-benefit of NO conversion[J]. Fuel, 2017, 202:470-482.
|
[23] |
SHAN Y, YANG W, LI Y, et al. Reparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Science of the Total Environment, 2019, 697:134049.
|
[24] |
YANG J P, ZHAO Y C, LIANG S F, et al. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3-xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 334:216-224.
|
[25] |
ZHANG A C, ZHANG Z H, CHEN J J, et al. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Processing Technology, 2015, 135:25-33.
|
[26] |
YANG J P, ZHAO Y, MA S, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology 2016, 50(21):12040-12047.
|
[27] |
DUAN X L, YUAN C G, JING T T, et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation[J]. Fuel, 2019, 239:830-840.
|
[28] |
ZOU S J, LIAO Y, XIONG S, et al. H2S-modified Fe-Ti spinel:a recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators[J]. Environment Science & Technology, 2017, 51(6):3426-3434.
|
[29] |
ZHOU F S, DIAO Y F, Magnetic copper-ferrosilicon composites as regenerable sorbents for Hg0 removal[J]. Colloids and Surface A, 2020, 590:124447.
|
[1] | LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028 |
[2] | ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012 |
[3] | ZHAO Gang, JIANG Ming, WEI Zhicheng, WANG Feng, LUO Jingyang, TANG Jianguo. IMPACTS OF SEWAGE CONCENTRATION ON METHANE EMISSION AND MICROBIOLOGICAL MECHANISMS IN SEWAGE COLLECTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 22-30. doi: 10.13205/j.hjgc.202404003 |
[4] | DING Ning, ZUO Shiwei, ZHANG Ruibo, WANG Zhaohui, LI Kewen, SHANG Ershun. SOLUBILIZER DESIGN FOR INTENSIFYING REMEDIATION OF SOIL WITH PETROLEUM HYDROCARBON POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 177-183. doi: 10.13205/j.hjgc.202401023 |
[5] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[6] | ZHU Lijun, WANG Huan, LI Shaofeng, LU Lu. HORIZONTAL CARBON FIBER BRUSH COUPLING BIOELECTRICHEMICAL SYSTEM TO STRENGTHEN TOTAL PETROLEUM HYDROCARBON DEGRADATION AND EXPAND INFLUENCE RADIUS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 159-165. doi: 10.13205/j.hjgc.202307022 |
[7] | XU Jinlan, YANG Zhengli. IMPACTS OF PETROLEUM HYDROCARBONS BIODEGRADATION IN OIL-CONTAMINATED SOIL AFTER PRE-OXIDATION WITH THREE BATCHS H2O2 ADDITION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 122-130. doi: 10.13205/j.hjgc.202302017 |
[8] | LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019 |
[9] | LI Hongcheng, SU Qu, ZHANG Wuzhu, ZHANG Yao, XIANG Luojing. ISOLATION, IDENTIFICATION AND DEGRADATION CHARACTERISTICS OF STRAINS FOR REMEDIATION OF PETROLEUM HYDROCARBON UNDER ARSENIC STRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 166-174. doi: 10.13205/j.hjgc.202307023 |
[10] | LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009 |
[11] | SHI Wenwen, WEI Xing, ZHOU Jinlong, LEI Mi, ZENG Yanyan. ADSORPTION OF PETROLEUM POLLUTANTS ON DIFFERENT TEXTURE SOILS IN XINJIANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 127-133. doi: 10.13205/j.hjgc.202204018 |
[12] | ZHAO Zi-xuan, QIU Wei-hua, WANG Pan. THE AEROBIC DEGRADATION OF NUTRITIONAL COMPLEXED KITCHEN WASTE BY MIXED MICROBIAL FLORA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 92-99. doi: 10.13205/j.hjgc.202104015 |
[13] | XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026 |
[14] | LIU Er-yan, XUE Fei, XU Shi-hong, LI Deng-xin. EFFECT OF MICROWAVE AND LYSOZYME JOINT TREATMENT ON THE DEWATERING PERFORMANCE OF PRINTING AND DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 13-17,42. doi: 10.13205/j.hjgc.202005003 |
[15] | BAI Dong-rui, ZHANG Tao, ZHAN Yu-yu, YANG Ting, XIONG Ying, HU Xin-yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, JIN Jun, LIU Ying, WANG Ying. PROGRESS IN OILY SLUDGE TREATMENT TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 207-212,146. doi: 10.13205/j.hjgc.202008034 |
[16] | ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006 |
[20] | Zhang Dan Jiang Lin Xia Tianxiang Jia Xiaoyang Zheng Di Zhang Lina Fan Yanling Liu Hui, . THE MIGRATION AND BIODEGRADATION OF PETROLEUM HYDROCARBONS IN SOILS-GROUNDWATER SYSTEM: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 1-6. |
1. | 刘杰,孙先锋,赵敏,吴蔓莉,韩宇星. 复合菌群构建及其石油烃降解特性. 化学工程. 2024(02): 17-22 . ![]() | |
2. | 王开明,曾飞虎,解文丽,陈小华,林若兰. 一株海洋碳九芳烃降解菌的筛选及降解性能研究. 延安职业技术学院学报. 2024(01): 102-108 . ![]() | |
3. | 陈丽艳,陈鋆玮,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明. 桔梗经米泔水炮制后挥发性成分及桔梗皂苷D的含量变化. 中国中医药科技. 2024(03): 408-412 . ![]() | |
4. | 车其芷,屈楠楠. 生物修复技术与复合菌种协同降解石油烃污染物的研究进展. 化工管理. 2024(13): 88-92 . ![]() | |
5. | 苟欢欢,刘慧博,徐凯,李元昊,雷波,杨开静. 过氧化物类芬顿体系修复有机污染物的研究进展. 现代农业科技. 2024(11): 133-138+153 . ![]() | |
6. | 罗娜,穆红梅. 油藏微生物在油气开发中的应用及展望. 中国地质调查. 2024(03): 9-16 . ![]() | |
7. | 叶顺云,邓华,胡乐宁,张俊渝,黄紫薇,王威,黄瑞,付佳慧. 富微孔型生物炭对2, 4-二氯苯酚的吸附性能. 环境工程. 2024(08): 25-34 . ![]() | |
8. | 李亚君,张宁,张鹏飞,张瑞昌,周鸣,章春芳,魏学锋. 具有降解原油和产生生物表面活性剂双功能菌株的特性. 中国环境科学. 2024(09): 5293-5302 . ![]() | |
9. | 邓雯,许永利. 基于CiteSpace的石油污染盐碱地可视化分析. 南方农机. 2024(19): 41-45 . ![]() | |
10. | 陈红初,张婷娣,付玉丰,茹金涛,秦传玉. 高效柴油降解菌的筛选及其对烷烃组分的降解. 中国环境科学. 2024(10): 5723-5732 . ![]() | |
11. | 宋佳宇,李昀照,李兴春,李丹丹,王庆宏,史权,陈春茂. 石油污染胁迫下土壤潜在降污固碳微生物互作关系研究. 环境科学研究. 2023(07): 1392-1403 . ![]() | |
12. | 李虹呈,苏趋,张武竹,张耀,向罗京. 砷胁迫下石油烃降解菌的分离、鉴定及其降解特性. 环境工程. 2023(07): 166-174 . ![]() | |
13. | 常晓宇,季蕾,黄玉杰,宋繁永,王加宁. 石油烃微生物降解基因及其工程菌应用研究进展. 中国环境科学. 2023(08): 4305-4315 . ![]() |