Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Yuan, GUO Huajun, SHAO Yan, LIU Zihao, XIANG Hao, HU Guofeng, LI Honghu, HU Jiangjun. REMOVAL OF ELEMENTAL MERCURY USING MAGNETIC ADSORBENT PREPARED FROM SLUDGE FLOCCULATED WITH FERROUS SULFATE BY Mn ACTIVATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 74-83. doi: 10.13205/j.hjgc.202303010
Citation: WANG Yuan, GUO Huajun, SHAO Yan, LIU Zihao, XIANG Hao, HU Guofeng, LI Honghu, HU Jiangjun. REMOVAL OF ELEMENTAL MERCURY USING MAGNETIC ADSORBENT PREPARED FROM SLUDGE FLOCCULATED WITH FERROUS SULFATE BY Mn ACTIVATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 74-83. doi: 10.13205/j.hjgc.202303010

REMOVAL OF ELEMENTAL MERCURY USING MAGNETIC ADSORBENT PREPARED FROM SLUDGE FLOCCULATED WITH FERROUS SULFATE BY Mn ACTIVATION

doi: 10.13205/j.hjgc.202303010
  • Received Date: 2022-04-21
    Available Online: 2023-05-26
  • Publish Date: 2023-03-01
  • In this work, ferrous sulfate-flocculated sewage sludge (SFS) was activated by Mn(NO3)2 and then pyrolyzed to obtain magnetic adsorbent, which was adopted to remove elemental mercury (Hg0) from flue gas. Results showed that 1) O2 produced by the thermal decomposition of Mn(NO3)2 promoted the decomposition of FeC<em>x during primary pyrolysis of sludge, and that was conducive to the formation of high-valent metal oxides such as Mn4+and Fe3+. The gas produced by the decomposition of Mn(NO3)2 also showed the effect of pore expansion. With the addition of 10% Mn(NO3)2, the specific surface area of the adsorbent reached the maximum (88.5 m2/g), but when the Mn(NO3)2 amount continued to rise, it would produce many crystalline substances and then decreased the specific surface area of the adsorbent. 2) Mn10-SFS showed a maximum mercury removal efficiency of 92.7% at the reaction temperature of 150 ℃. 3) O2 could effectively supplement the active oxygen in the adsorbent, promoting the removal of Hg0, and presence of NO and a low SO2 concentration enhanced Hg0 removal, while H2O vapor and a high concentration of SO2 inhibited it. The Hg0 adsorption and desorption experiment showed that the adsorbent of Mn10-SFS exhibited good renewable recycling performance and stability. After Hg0 capture and regeneration for 5 cycles, the removal efficiency of the adsorbent was not notably degraded.
  • [1]
    YANG Y J, LIU J, WANG Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Progress in Energy and Combustion Science, 2020, 79:100844.
    [2]
    YANG S J, GUO Y F, YAN N Q, et al. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):698-708.
    [3]
    姬丽琴, 齐永新, 周林成, 等. 磁性微/纳米材料吸附环境污染物的研究进展[J]. 化工新型材料, 2011, 39(11):32-35.
    [4]
    DONG L, HUANG Y J, CHEN H, et al. Magnetic γFe2O3loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy & Fuels, 2019, 33(8):7522-7533.
    [5]
    ZENG X B, XU Y, ZHANG B, et al. Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma[J]. Chemical Engineering Journal, 2017, 309:503-512.
    [6]
    YANG S J, GUO Y F, YAN N Q, et al. Nanosized cation-deficient Fe-Ti spinel:a novel magnetic sorbent for elemental mercury capture from flue gas[J]. ACS Applied Materials & Interfaces, 2011, 3(2):209-217.
    [7]
    YANG S J, GUO Y F, YAN N Q, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1):508-515.
    [8]
    YANG S J, YAN N Q, GUO Y F, et al. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-δO4[J]. Environmental Science & Technology, 2011, 45(4):1540-1546.
    [9]
    ZHANG Z H, WU J, LI B, et al. Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides[J]. Chemical Engineering Journal, 2019, 375:121946.
    [10]
    林子增,黄瑛,乔红杰,等. 城市污水厂污泥化学调理深度脱水技术述评[J]. 应用化工, 2016, 45(6):1159-1162.
    [11]
    YANG X, XU G R, YU H R, et al. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology, 2016, 211:566-573.
    [12]
    WANG Y, LI H H, HE Z, et al. Removal of elemental mercury from flue gas using the magnetic Fe-containing carbon prepared from the sludge flocculated with ferrous sulfate[J]. Environmental Science and Pollution Research, 2020, 27:30254-30264.
    [13]
    WANG Y, LI H H, SHAO Y, et al. Removal of elemental mercury using magnetic Fe-containing carbon prepared from sludge flocculated with ferrous sulfate by zinc chloride activation[J]. Journal of the Energy Institute, 2021, 98:98-106.
    [14]
    YANG Y J, LIU J, WANG Z, et al. Interface reaction activity of recyclable and regenerable Cu-Mn spinel-type sorbent for Hg0 capture from flue gas[J]. Chemical Engineering Journal, 2019, 372:697-707.
    [15]
    吕浩. 活性炭喷射耦合除尘器协同脱除燃煤烟气有机污染物/汞/CPM研究[D]. 南京:东南大学,2021.
    [16]
    LIAO Y, CHEN D, ZOU S J, et al. A recyclable naturally derived magnetic pyrrhotite for elemental mercury recovery from the flue gas[J]. Environmental Science & Technology, 2016, 50:10562-10569.
    [17]
    杨建平. 可循环再生磁珠吸附剂脱汞及其反应机理研究[D]. 武汉:华中科技大学, 2017.
    [18]
    LI H H, WANG S K, WANG X, et al. FeCl3-modified Co-Ce oxides catalysts for mercury removal from coal-fired flue gas[J]. Chemical Papers, 2017, 71(12):2545-2555.
    [19]
    XU Y, LUO G Q, PANG Q C, et al. Adsorption and catalytic oxidation elemental mercury over regenerable magnetic Fe-Ce mixed oxides modified by non-thermal plasma treatment[J]. Chemical Engineering Journal, 2019, 358:1454-1463.
    [20]
    TAO S S, LI C T, FAN X P, et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chemical Engineering Journal, 2012. 210, 547-56.
    [21]
    LI H L, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219:319-326.
    [22]
    LI H H, WANG S K, WANG X, et al. Catalytic oxidation of Hg0 in flue gas over Ce modified TiO2 supported Co-Mn catalysts:characterization, the effect of gas composition and co-benefit of NO conversion[J]. Fuel, 2017, 202:470-482.
    [23]
    SHAN Y, YANG W, LI Y, et al. Reparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Science of the Total Environment, 2019, 697:134049.
    [24]
    YANG J P, ZHAO Y C, LIANG S F, et al. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3-xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 334:216-224.
    [25]
    ZHANG A C, ZHANG Z H, CHEN J J, et al. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Processing Technology, 2015, 135:25-33.
    [26]
    YANG J P, ZHAO Y, MA S, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology 2016, 50(21):12040-12047.
    [27]
    DUAN X L, YUAN C G, JING T T, et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation[J]. Fuel, 2019, 239:830-840.
    [28]
    ZOU S J, LIAO Y, XIONG S, et al. H2S-modified Fe-Ti spinel:a recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators[J]. Environment Science & Technology, 2017, 51(6):3426-3434.
    [29]
    ZHOU F S, DIAO Y F, Magnetic copper-ferrosilicon composites as regenerable sorbents for Hg0 removal[J]. Colloids and Surface A, 2020, 590:124447.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]GAO Wenyuan, ZOU Lin, ZHU Junyi, XIAO Tongjue, YU Yi, SHEN Jianlin. TEMPORAL AND SPATIAL VARIATION CHARACTERISTICS AND DRIVING FACTORS OF SURFACE WATER QUALITY IN HUNAN PROVINCE, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 17-24. doi: 10.13205/j.hjgc.202408003
    [3]WU Yi, WANG Hua, DENG Yanqing, LI Xiaoying, XU Haosen. EVALUATION AND DRIVING CHARACTERISTICS OF WATER NUTRIENTS IN POYANG LAKE BASED ON TLI METHOD[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 10-17. doi: 10.13205/j.hjgc.202405002
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [6]LIU Wenqiang, YU Dawei, LI Kun, ZHENG Libing, ZHU Liying, GUI Shuanglin, WEI Yuansong. EFFECTS OF RAINFALL CHARACTERISTICS ON RIVER WATER QUALITY IN DIFFERENT WATER PERIODS: A CASE STUDY OF NANCHANG SECTION IN THE GANJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 91-99. doi: 10.13205/j.hjgc.202308012
    [7]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [8]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [9]WANG Yiming, DING Lu, XU Jiaying, SHI Lei, LIU Yifan, LIANG Wenbo, YANG Xiaoli. CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 54-60. doi: 10.13205/j.hjgc.202211008
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006
    [12]QI Er-bing, HUANG Ya-ji, YUAN Qi, HU Hua-jun, FAN Cong-hui, CAO Yan-yan, DING Shou-yi. LIME COAGULATION-SUBMERGED EVAPORATION SYNERGISTIC TREATMENT FOR NANOFILTRATION MEMBRANE CONCENTRATE OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 54-58,77. doi: 10.13205/j.hjgc.202012010
    [13]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
  • Cited by

    Periodical cited type(2)

    1. 樊杰,谭振宇,黄发新,雷阳,閤成成. 污水厂尾水对河流水质和底泥细菌群落的影响. 绿色科技. 2024(14): 153-158 .
    2. 荆玉姝,王黎佳,王丽艳,牟润芝,陈栋,刘长青. 尾水排放对河道水质及底泥细菌群落结构影响. 环境科学与技术. 2021(01): 85-93 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.3 %FULLTEXT: 11.3 %META: 81.0 %META: 81.0 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 2.4 %China: 2.4 %[]: 0.4 %[]: 0.4 %上海: 2.0 %上海: 2.0 %临夏回族自治州: 0.2 %临夏回族自治州: 0.2 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊犁哈萨克自治州: 0.4 %伊犁哈萨克自治州: 0.4 %保定: 0.2 %保定: 0.2 %信阳: 0.7 %信阳: 0.7 %兰州: 1.7 %兰州: 1.7 %北京: 8.3 %北京: 8.3 %十堰: 0.2 %十堰: 0.2 %南京: 2.0 %南京: 2.0 %南京市江宁区: 0.2 %南京市江宁区: 0.2 %南宁: 0.4 %南宁: 0.4 %南昌: 0.2 %南昌: 0.2 %厦门: 0.7 %厦门: 0.7 %台州: 0.9 %台州: 0.9 %呼和浩特: 0.2 %呼和浩特: 0.2 %天津: 1.3 %天津: 1.3 %太原: 0.4 %太原: 0.4 %安康: 0.4 %安康: 0.4 %常德: 0.2 %常德: 0.2 %广州: 3.3 %广州: 3.3 %张家口: 1.5 %张家口: 1.5 %徐州: 0.2 %徐州: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.2 %扬州: 0.2 %昆明: 1.5 %昆明: 1.5 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.3 %杭州: 1.3 %武汉: 1.7 %武汉: 1.7 %汕头: 0.7 %汕头: 0.7 %江门: 0.2 %江门: 0.2 %沈阳: 0.2 %沈阳: 0.2 %济源: 0.2 %济源: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.7 %温州: 0.7 %湖州: 0.7 %湖州: 0.7 %漯河: 1.5 %漯河: 1.5 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.1 %苏州: 1.1 %莱芜: 0.7 %莱芜: 0.7 %西宁: 29.8 %西宁: 29.8 %西安: 1.3 %西安: 1.3 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.7 %运城: 1.7 %通辽: 0.2 %通辽: 0.2 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.4 %郑州: 2.4 %重庆: 1.1 %重庆: 1.1 %银川: 0.4 %银川: 0.4 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 0.9 %阳泉: 0.9 %阿克苏: 0.2 %阿克苏: 0.2 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %其他China[]上海临夏回族自治州临汾乌鲁木齐伊犁哈萨克自治州保定信阳兰州北京十堰南京南京市江宁区南宁南昌厦门台州呼和浩特天津太原安康常德广州张家口徐州成都扬州昆明晋城朝阳杭州武汉汕头江门沈阳济源深圳温州湖州漯河绍兴芒廷维尤芝加哥苏州莱芜西宁西安西雅图贵阳运城通辽遵义邢台邯郸郑州重庆银川长沙长治阳泉阿克苏青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (159) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return