Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012
Citation: FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012

ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING

doi: 10.13205/j.hjgc.202303012
  • Received Date: 2021-09-09
    Available Online: 2023-05-26
  • Publish Date: 2023-03-01
  • Industrial coating volatile organic compounds (VOCs) exhaust gas was selected as the test object, and a fixed-bed pilot plant was designed to conduct VOCs adsorption and desorption tests with the honeycomb activated carbon and zeolite molecular sieve as adsorbents. The results showed that the iodine value, specific surface area, total pore volume and micropore volume of honeycomb activated carbon were larger than those of zeolite molecular sieve, which were 1.79, 2.93, 1.55 and 2.02 times those of zeolite molecular sieve, respectively; under the same desorption temperature and inlet air speed, VOCs were easier to desorb from the surface of honeycomb activated carbon, and the desorption time was much shorter than that of zeolite molecular sieve; under the same reaction conditions, the saturation adsorption capacity of honeycomb activated carbon for VOCs was significantly higher than that of zeolite molecular sieve. Under the same reaction conditions, the saturation adsorption amount of VOCs on honeycomb activated carbon was significantly higher than that on zeolite molecular sieve, but the saturation adsorption amount of zeolite molecular sieve was less affected by the reaction temperature and VOCs concentration; after 10 cycles of adsorption and desorption, the adsorption rate of VOCs on honeycomb activated carbon and zeolite molecular sieve decreased to 71.35% and 81.15% of that of the first time, respectively, and the adsorption and desorption performance of zeolite molecular sieve was more stable. The adsorption and desorption performance of zeolite molecular sieve was more stable. The saturation adsorption capacity of honeycomb activated carbon was large and the desorption time was fast, which was suitable for treating wide load, low air volume and medium to high concentration of VOCs waste gas; zeolite molecular sieve had better aerodynamic and cyclic adsorption and desorption performance, suitable for treating low to medium concentration of VOCs waste gas with a relatively higher initial temperature.
  • loading
  • [1]
    张鸿宇,王媛,卢亚灵,等.我国臭氧污染控制分区及其控制类型识别[J].中国环境科学,2021,41(9):4051-4059.
    [2]
    姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.
    [3]
    柴发合.我国大气污染治理历程回顾与展望[J].环境与可持续发展,2020,45(3):5-15.
    [4]
    罗锦程,丁问薇.40年我国大气污染问题的回顾与展望:访中国工程院院士、北京大学环境科学与工程学院教授唐孝炎[J].环境保护,2018,46(20):11-13.
    [5]
    姜磊,周海峰,赖志柱,等.中国城市PM2.5时空动态变化特征分析:2015-2017年[J].环境科学学报,2018,38(10):3816-3825.
    [6]
    MUKERJEE S, SMITH L, LONG R, et al. Particulate matter, nitrogen oxides, ozone and select volatile organic compounds during a winter sampling period in Logan, Utah, USA[J]. Journal of the Air & Waste Management Association, 2019,69(6):778-788.
    [7]
    VKA B, VS A. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J]. Chemosphere, 2021,283:131184.
    [8]
    NOA B, HWR B, TBA B. Temperature dependence of tropospheric ozone under NOx reductions over Germany[J]. Atmospheric Environment, 2021,253:118334.
    [9]
    ZAVALA M, BRUNE W H, VELASCO E, et al. Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area[J]. Atmospheric Environment, 2020, 238:117747.
    [10]
    王铁宇,李奇锋,吕永龙.我国VOCs的排放特征及控制对策研究[J].环境科学,2013,34(12):4756-4763.
    [11]
    栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486.
    [12]
    孙园园,白璐,张玥,等.工业行业源头-过程-末端全过程减排潜力评估研究[J].环境科学研究,2021,34(12):2867-2875.
    [13]
    武宁,杨忠凯,李玉,等.挥发性有机物治理技术研究进展[J].现代化工,2020,40(2):17-22.
    [14]
    LI Z R, JIN Y Q, CHEN T, et al. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity[J]. Separation and Purification Technology,2021,272:118659.
    [15]
    NONE. Regenerative thermal oxidizer[J]. Metal Finishing, 1999, 97(5):587.
    [16]
    ZEISS R F, IBBECSON C. Cryogenic condensation puts a chill on VOCs[J]. Pollution Engineering, 1997,29(9):56-61.
    [17]
    刘帅,张亚妮,薛明,等.挥发性有机物(VOCs)吸附材料的研究进展[J].环境工程,2021,39(6):79-89.
    [18]
    李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20.
    [19]
    钱薇,张浩哲,陈超宇,等.活性炭和分子筛吸附VOCs的研究进展[J].化工生产与技术,2019,25(3):19-23

    ,8.
    [20]
    解炜,肖乃友,段超,等.活性炭处理挥发性有机物的研究现状及应用展望[J].煤质技术,2020,35(5):9-15.
    [21]
    张智,马修卫,李津津,等.中高温环境下VOCs在活性炭上的吸附性能研究[J].化工学报,2019,70(12):4811-4820.
    [22]
    安亚雄,付强,刘冰,等.不同孔径活性炭吸附挥发性有机物的分子模拟[J].化工进展,2019,38(11):5136-5141.
    [23]
    缪海超,羌宁,刘涛,等.活性炭吸附缓冲非稳态VOCs研究进展[J].化工环保,2019,39(2):122-128.
    [24]
    陈益清,高晓洋,伍健威,等.碱改性活性炭对VOCs的吸附性能[J].化工环保,2019,39(2):202-207.
    [25]
    刘星园,张永锋,肖凯,等.分子筛材料在VOCs吸附中的研究进展[J].化工进展,2022,41(5):2504-2510.
    [26]
    王旭,吴玉帅,杨欣,等.沸石分子筛用于VOCs吸附脱除的应用研究进展[J].化工进展,2021,40(5):2813-2826.
    [27]
    李智,王建英,王勇,等.NaY沸石分子筛在VOCs处理中的应用[J].环境工程学报,2020,14(8):2211-2221.
    [28]
    李智,王建英,张向京,等.分子筛吸附法脱除VOCs的研究进展[J].煤炭与化工,2019,42(6):121-125

    ,142.
    [29]
    张凯,杨仕超,罗敏,等.纳米片层状ZSM-5分子筛制备及其对室内环境VOCs吸附性能[J].环境工程,2020,38(1):60-64

    ,74.
    [30]
    程存喜,刘芳,邵再东,等.多孔材料吸附空气中丙酮的研究进展[J].环境科学与技术,2021,44(5):41-52.
    [31]
    孙雪娇,王晨鹏,潘晓阳,等.MOFs基多孔碳材料在气体吸附与分离中的应用[J].科学通报,2021,66(27):3590-3603.
    [32]
    高君安,李想,史东军,等.ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究[J].现代化工,2020,40(6):123-127.
    [33]
    高君安,王伟,张傑,等.用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J].化工学报,2020,71(1):337-343.
    [34]
    余岩松,吴柳彦,刘慧娟,等.双组分VOCs在吸附树脂上的吸附穿透特性[J].中国环境科学,2020,40(5):1982-1990.
    [35]
    BLAZEWICZ S, SWIATKOWSKI A, TRZNADEL B J. The influence of heat treatment on activated carbon structure and porosity[J].Carbon,1999,37(4):693-700.
    [36]
    BOONAMNUAYVITAYA V, SAE-UNG S, TANTHAPANICHAKOON W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Separation and Purification Technology,2005,42(2):159-168.
    [37]
    RONG H Q, RYU Z Y, ZHENG J T, et al. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde[J]. Journal of Colloid and Interface Science,2003,261(2):207-212.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return