Citation: | FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012 |
[1] |
张鸿宇,王媛,卢亚灵,等.我国臭氧污染控制分区及其控制类型识别[J].中国环境科学,2021,41(9):4051-4059.
|
[2] |
姜华,常宏咪.我国臭氧污染形势分析及成因初探[J].环境科学研究,2021,34(7):1576-1582.
|
[3] |
柴发合.我国大气污染治理历程回顾与展望[J].环境与可持续发展,2020,45(3):5-15.
|
[4] |
罗锦程,丁问薇.40年我国大气污染问题的回顾与展望:访中国工程院院士、北京大学环境科学与工程学院教授唐孝炎[J].环境保护,2018,46(20):11-13.
|
[5] |
姜磊,周海峰,赖志柱,等.中国城市PM2.5时空动态变化特征分析:2015-2017年[J].环境科学学报,2018,38(10):3816-3825.
|
[6] |
MUKERJEE S, SMITH L, LONG R, et al. Particulate matter, nitrogen oxides, ozone and select volatile organic compounds during a winter sampling period in Logan, Utah, USA[J]. Journal of the Air & Waste Management Association, 2019,69(6):778-788.
|
[7] |
VKA B, VS A. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year[J]. Chemosphere, 2021,283:131184.
|
[8] |
NOA B, HWR B, TBA B. Temperature dependence of tropospheric ozone under NOx reductions over Germany[J]. Atmospheric Environment, 2021,253:118334.
|
[9] |
ZAVALA M, BRUNE W H, VELASCO E, et al. Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area[J]. Atmospheric Environment, 2020, 238:117747.
|
[10] |
王铁宇,李奇锋,吕永龙.我国VOCs的排放特征及控制对策研究[J].环境科学,2013,34(12):4756-4763.
|
[11] |
栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486.
|
[12] |
孙园园,白璐,张玥,等.工业行业源头-过程-末端全过程减排潜力评估研究[J].环境科学研究,2021,34(12):2867-2875.
|
[13] |
武宁,杨忠凯,李玉,等.挥发性有机物治理技术研究进展[J].现代化工,2020,40(2):17-22.
|
[14] |
LI Z R, JIN Y Q, CHEN T, et al. Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity[J]. Separation and Purification Technology,2021,272:118659.
|
[15] |
NONE. Regenerative thermal oxidizer[J]. Metal Finishing, 1999, 97(5):587.
|
[16] |
ZEISS R F, IBBECSON C. Cryogenic condensation puts a chill on VOCs[J]. Pollution Engineering, 1997,29(9):56-61.
|
[17] |
刘帅,张亚妮,薛明,等.挥发性有机物(VOCs)吸附材料的研究进展[J].环境工程,2021,39(6):79-89.
|
[18] |
李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20.
|
[19] |
钱薇,张浩哲,陈超宇,等.活性炭和分子筛吸附VOCs的研究进展[J].化工生产与技术,2019,25(3):19-23
,8.
|
[20] |
解炜,肖乃友,段超,等.活性炭处理挥发性有机物的研究现状及应用展望[J].煤质技术,2020,35(5):9-15.
|
[21] |
张智,马修卫,李津津,等.中高温环境下VOCs在活性炭上的吸附性能研究[J].化工学报,2019,70(12):4811-4820.
|
[22] |
安亚雄,付强,刘冰,等.不同孔径活性炭吸附挥发性有机物的分子模拟[J].化工进展,2019,38(11):5136-5141.
|
[23] |
缪海超,羌宁,刘涛,等.活性炭吸附缓冲非稳态VOCs研究进展[J].化工环保,2019,39(2):122-128.
|
[24] |
陈益清,高晓洋,伍健威,等.碱改性活性炭对VOCs的吸附性能[J].化工环保,2019,39(2):202-207.
|
[25] |
刘星园,张永锋,肖凯,等.分子筛材料在VOCs吸附中的研究进展[J].化工进展,2022,41(5):2504-2510.
|
[26] |
王旭,吴玉帅,杨欣,等.沸石分子筛用于VOCs吸附脱除的应用研究进展[J].化工进展,2021,40(5):2813-2826.
|
[27] |
李智,王建英,王勇,等.NaY沸石分子筛在VOCs处理中的应用[J].环境工程学报,2020,14(8):2211-2221.
|
[28] |
李智,王建英,张向京,等.分子筛吸附法脱除VOCs的研究进展[J].煤炭与化工,2019,42(6):121-125
,142.
|
[29] |
张凯,杨仕超,罗敏,等.纳米片层状ZSM-5分子筛制备及其对室内环境VOCs吸附性能[J].环境工程,2020,38(1):60-64
,74.
|
[30] |
程存喜,刘芳,邵再东,等.多孔材料吸附空气中丙酮的研究进展[J].环境科学与技术,2021,44(5):41-52.
|
[31] |
孙雪娇,王晨鹏,潘晓阳,等.MOFs基多孔碳材料在气体吸附与分离中的应用[J].科学通报,2021,66(27):3590-3603.
|
[32] |
高君安,李想,史东军,等.ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究[J].现代化工,2020,40(6):123-127.
|
[33] |
高君安,王伟,张傑,等.用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J].化工学报,2020,71(1):337-343.
|
[34] |
余岩松,吴柳彦,刘慧娟,等.双组分VOCs在吸附树脂上的吸附穿透特性[J].中国环境科学,2020,40(5):1982-1990.
|
[35] |
BLAZEWICZ S, SWIATKOWSKI A, TRZNADEL B J. The influence of heat treatment on activated carbon structure and porosity[J].Carbon,1999,37(4):693-700.
|
[36] |
BOONAMNUAYVITAYA V, SAE-UNG S, TANTHAPANICHAKOON W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J]. Separation and Purification Technology,2005,42(2):159-168.
|
[37] |
RONG H Q, RYU Z Y, ZHENG J T, et al. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde[J]. Journal of Colloid and Interface Science,2003,261(2):207-212.
|