Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 41 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017
Citation: YANG Shu, ZHOU Honghui, LI Ying, ZHANG Yun, TIAN Senlin, CHENG Xia, HU Han, HU Xuewei. EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 129-135,215. doi: 10.13205/j.hjgc.202303017

EFFECT OF SAPONIN ON BIOLOGICAL OXIDATION OF PYRITE-CONTAINING SOLID WASTE FROM MINING AND DRESSING

doi: 10.13205/j.hjgc.202303017
  • Received Date: 2022-04-22
    Available Online: 2023-05-26
  • Publish Date: 2023-03-01
  • In order to improve the efficiency of biological oxidative decomposition of pyrite-containing solid waste from mining and dressing, this paper investigated the effect of saponin on the release of H+, Fe and S in the biological oxidation process of pyrite-containing solid waste from mining and dressing, by using saponin-microorganism-sulfurous iron ore mining solid waste as a reaction system, and its mechanism was discussed. The results showed that it could release 0.55 mmol/g of H+, and 111.4 mg/g of total Fe, as well as 359.3 mg/g of SO42- by adding 30 mg/L saponin and bio-oxidizing for 38 days from the pyrite-containing solid waste of mining and dressing, which were increased by 175%, 82.9% and 39.2%, respectively compared with the blank control group. Firstly, the addition of saponins accelerated the oxidative dissolution of the sendiment layer (jarosite, S0) on the mineral surface, and inhibited the formation of secondary mineral jarosite, thus slowed down the passivation effect. Secondly, it could significantly reduce the contact angle and surface tension between the solution and the mineral surface, and enhance the penetration of Fe3+ in the mineral microporous cracks, so as to accelerate the oxidation and dissolution of pyrite-containing solid waste from mining and dressing. The research results can provide theoretical support for application of saponin in the biological oxidation of pyrite-containing solid waste from mining and dressing.
  • loading
  • [1]
    WANG S H, JIN H X, DENG Y, et al. Comprehensive utilization status of red mud in China:a critical review[J]. Journal of Cleaner Production, 2021, 289(11):125136.
    [2]
    HU G Y, FEI L, KHOSO S A, et al. Staged leaching behavior of red mud during dealkalization with mild acid[J]. Hydrometallurgy, 2020, 196:105422.
    [3]
    梅贤功, 孙宗毅, 左文亮, 等. 国外氧化铝赤泥脱钠的进展[J]. 轻金属, 1992(7):21-24.
    [4]
    LOGAN T C, SEAL T, BRIERLEY J A. Whole-ore heap biooxidation of sulfidic gold-bearing ores[M]. Biomining. Springer, 2007:113-138.
    [5]
    党志, 卢桂宁, 杨琛, 等. 金属硫化物矿区环境污染的源头控制与修复技术[J]. 华南理工大学学报(自然科学版), 2012, 40(10):83-89.
    [6]
    PARK I, TABELIN C B, JEON S, et al. A review of recent strategies for acid mine drainage prevention and mine tailings recycling[J]. Chemosphere, 2019, 219:588-606.
    [7]
    艾纯明, 孙萍萍, 王贻明, 等. 表面活性剂在溶浸采矿中的研究与应用现状[J]. 金属矿山, 2019(5):9-13.
    [8]
    张瑞洋, 卢涛, 孙春宝, 等. 表面活性剂吐温20对胶硫钼矿生物浸出的促进机理[J]. 工程科学学报, 2018, 40(7):793-799.
    [9]
    张德诚, 朱莉, 罗学刚. 低温下非离子表面活性剂加速细菌浸出黄铜矿[J]. 化工进展, 2008, 27(4):540-543.
    [10]
    LAN Z Y, HU Y H, QIN W Q. Effect of surfactant OPD on the bioleaching of marmatite[J]. Minerals Engineering, 2009, 22(1):10-13.
    [11]
    ZHANG Y B, ZHANG B Y, YANG S Q, et al. Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant[J]. International Journal of Mining Science and Technology, 2021, 31(6):995-1002.
    [12]
    刘俊, 龚文琪, 申求实, 等. 低品位磷矿的生物浸出研究[J]. 金属矿山, 2008(7):54-57.
    [13]
    LIU Z F, LI Z G, ZHONG H, et al. Recent advances in the environmental applications of biosurfactant saponins:a review[J]. Journal of Environmental Chemical Engineering, 2017, 5(6):6030-6038.
    [14]
    莫晓兰, 林海, 傅开彬, 等. 黄铁矿促进黄铜矿微生物浸出影响因素[J]. 北京科技大学学报, 2012, 34(7):761-768.
    [15]
    宋永伟, 王鹤茹, 梁剑茹, 等. 嗜酸性氧化亚铁硫杆菌介导的次生铁矿物形成的影响因素分析[J]. 环境科学学报, 2018, 38(3):1024-1030.
    [16]
    ZAYNAB M, SHARIF Y, ABBAS S, et al. Saponin toxicity as key player in plant defence against pathogens[J]. Toxicon, 2021, 193:21-27.
    [17]
    陈炳辉, 万茉莉, 王智美, 等. 粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究[J]. 岩石矿物学杂志, 2010, 29(5):562-568.
    [18]
    JIAO B Q, ZHANG J, LI D W, et al. The effect on leaching rate of Copper in Chalcopyrite Tailings by Acidithiobacillus ferrooxidans induced by UV[J]. Disaster Advances, 2012, 5(4):254-257.
    [19]
    SANDY JONES F, BIGHAM J M, GRAMP J P, et al. Synthesis and properties of ternary (K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions[J]. Materials Science & Engineering:C, 2014, 44:391-399.
    [20]
    LIU F W, ZHOU J, JIN T J, et al. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans[J]. Water Science & Technology, 2016, 73(6):1442-1453.
    [21]
    毕文龙, 董燕, 刘奋武, 等. 温度与矿浆浓度对硫铁矿生物氧化污染物释放的影响[J]. 生态学杂志, 2019, 38(11):3434-3440.
    [22]
    乔星星, 刘冠兰, 周立祥, 等. 氧化亚铁硫杆菌密度与营养供给对硫铁矿生物氧化的影响[J]. 环境科学学报, 2018, 38(2):449-456.
    [23]
    吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂强化铜矿石浸出[J]. 北京科技大学学报, 2013, 35(6):709-713.
    [24]
    TU Z H, GUO C L, ZHANG T, et al. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2017, 167:58-65.
    [25]
    DAOUD J, KARAMANEV D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2006, 19(9):960-967.
    [26]
    PRADHAN N, NATHSARMA K C, RAO K S, et al. Heap bioleaching of chalcopyrite:a review[J]. Minerals Engineering, 2008, 21(5):355-365.
    [27]
    ZHANG R Y, WEI D Z, SHEN Y B, et al. Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans[J]. Minerals Engineering, 2016, 95:74-78.
    [28]
    SASAKI K, NAKAMUTA Y, HIRAJIMA T, et al. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2009, 95(1/2):153-158.
    [29]
    KINNUNEN P H, PUHAKKA J A. Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric sulfate[J]. Journal of Chemical Technology & Biotechnology, 2004, 79:830-834.
    [30]
    SAND W, GEHRKE T, JOZSA P G, et al. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2):159-175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return