Citation: | LUO Qing, WU Zhongping, WANG Congcong, LI Yujie. REMEDIATION CAPABILITY OF FOUR HERBS ON CHLORINATED ORGANOPHOSPHATE FLAME RETARDANTS CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021 |
[1] |
STAPLETON H, SHARMA S, GETZINGER G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 pentaBDE phase out[J]. Environmental Science & Technology, 2012, 46(24):13432-13439.
|
[2] |
LI T Y, BAO L J, WU C C, et al. Organophosphate flame retardants emitted from thermal treatment and open burning of e-waste[J]. Journal of Hazardous Materials, 2019, 367(4):390-396.
|
[3] |
van DER VEEN I, de BOER J. Phosphorus flame retardants:properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153.
|
[4] |
BJORKLUND J, ISETUN S, NILSSON U. Selective determination of organophosphate flame retardants and plasticizers in indoor air by gas chromatography, positive-ion chemical ionization and collision-induces dissociation mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2004, 18(24):3079-3083.
|
[5] |
DISHAW L, POWERS C, RYDE I, et al. Is the PentaBDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells[J]. Toxicology and Applied Pharmacology, 2011, 256(3):281-289.
|
[6] |
NI Y, KUMAGAI K, YANAGISAWA Y. Measuring emissions of organophosphate flame retardants using a passive flux sampler[J]. Atmospheric Environment, 2007, 41(15):3235-3240.
|
[7] |
FAN X, KUBWABO C, RASMUSSEN P, et al. Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques[J]. Science of the Total Environment, 2014, 491/492:80-86.
|
[8] |
LUO Q, SHAN Y, ADEEL M, et al. Levels, distribution, and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang, China[J]. Environmental Science and Pollution Research, 2018, 25(31):31752-33176.
|
[9] |
LUO Q, GU L Y, WU Z P, et al. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao river, northeast China[J]. Chemosphere, 2020, 250:126297.
|
[10] |
WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China:spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671:528-535.
|
[11] |
LEE S, CHO H J, CHOI W, et al. Organophosphate flame retardants (OPFRs) in water and sediment:occurrence, distribution, and hotspots of contamination of Lake Shihwa, Korea[J]. Marine Pollution Bulletin, 2018, 130:105-112.
|
[12] |
吴星悦, 孙敦宇, 季秋忆, 等. 氯代有机磷酸酯阻燃剂的去除技术研究进展[J]. 环境化学, 2022, 41(3):1022-1034.
|
[13] |
SU G Y, LETCHER R, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution:pH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15):8103-8111.
|
[14] |
FANG Y D, KIM E, STRATHMANN T. Mineral and base-catalyzed hydrolysis of organophosphate flame retardants:potential major fate-controlling sink in soil and aquatic environments[J]. Environmental Science & Technology, 2018, 52(4):1997-2006.
|
[15] |
NANCHARAIAH Y, REDDY G, MOHAN T, et al. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms[J]. Journal of Hazardous Materials, 2015, 283:705-711.
|
[16] |
XIONG J K, LI G X, AN T C. The microbial degradation of 2, 4, 6-tribromophenol (TBP) in water/sediments interface:investigating bioaugmentation using Bacillus sp. GZT[J]. Science of the Total Environment, 2017, 575:573-580.
|
[17] |
WEI K, YIN H, PENG H, et al. Bioremediation of triphenyl phosphate in river water microcosms:proteome alteration of Brevibacillus brevis and cytotoxicity assessments[J]. Science of the Total Environment, 2019, 649:563-570.
|
[18] |
HOU R, LUO X S, LIU C C, et al. Enhanced degradation of triphenyl phosphate (TPHP) in bioelectrochemical systems:kinetics, pathway and degradation mechanisms[J]. Environmental Pollution, 2019, 254:113040.
|
[19] |
TAKAHASHI S, KAWASHIMA K, KAWASAKI M, et al. Enrichment and characterization of chlorinated organophosphate ester degrading mixed bacterial cultures[J]. Journal of Bioscience and Bioengineering, 2008, 106(1):27-32.
|
[20] |
TAKAHASHI S, KATANUMA H, ABE K, et al. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris (2-chloroethyl) phosphate, in Sphingobium sp strain TCM1[J]. Applied Microbiology and Biotechnology, 2017, 101(5):2153-2162.
|
[21] |
HE H, JI Q Y, GAO Z Q, et al. Degradation of tri (2-chloroisopropyl) phosphate by the UV/H2O2 system:kinetics, mechanisms and toxicity evaluation[J]. Chemosphere, 2019, 236:124388.
|
[22] |
YE J S, LIU J, LI C S, et al. Heterogeneous photocatalysis of tris (2-chloroethyl) phosphate by UV/TiO2:degradation products and impacts on bacterial proteome[J]. Water Research, 2017, 124:29-38.
|
[23] |
HU H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate:effect of irradiation wavelength and real water matrixes[J]. Chemical Engineering Journal, 2019, 368:273-284.
|
[24] |
OU H S, LIU J, YE J S, et al. Degradation of tris (2-chloroethyl) phosphate by ultraviolet-persulfate:kinetics, pathway and intermediate impact on proteome of Escherichia coli[J]. Chemical Engineering Journal, 2017, 308:386-395.
|
[25] |
XU X X, CHEN J, QU R J, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate:kinetics, water matrix effects, degradation products and reaction pathways[J]. Chemosphere, 2017, 185:833-843.
|
[26] |
ANTONOPOULOU M, GIANNAKAS A, BAIRAMIS F, et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts[J]. Chemical Engineering Journal, 2017, 318:231-239.
|
[27] |
沈源源, 滕应, 骆永明, 等. 几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J]. 土壤, 2011, 43(2):253-257.
|
[28] |
涂晨, 滕应, 骆永明, 等.多氯联苯污染土壤的豆科-禾本科植物田间修复效应[J]. 环境科学, 2010, 31(12):3062-3066.
|
[29] |
何洋, 董志成, 刘林德, 等. 沉积物中多环芳烃的植物修复研究进展[J]. 环境工程, 2018, 36(2):168-172.
|
[30] |
MA T T, TENG Y, LUO Y M, et al. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site:a field study[J]. International Journal of Phytoremediation, 2013, 15(2), 154-167.
|
[31] |
BURKEN J, SCHNOOR J. Predictive relationships for uptake of organic contaminants by hybrid poplar trees[J]. Environmental Science & Technology, 1998, 32(21):3379-3385.
|
[32] |
LIU Q, WANG X L, YANG R Y, et al. Uptake kinetics, accumulation, and long-distance transport of organophosphate esters in plants:impacts of chemical and plant properties[J]. Environmental Science & Technology, 2019, 53(9):4940-4947.
|
[33] |
LUO Q, LI Y J, WU Z P, et al. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. Suzhou)[J]. Chemosphere, 2021, 277:130347.
|
[34] |
QIN P, LU S Y, LIU X H, et al. Removal of tri-(2-chloroisopropyl) phosphate (TCPP) by three types of constructed wetlands[J]. Science of the Total Environment, 2020, 749:141668.
|
[35] |
HU B B, JIANG L F, ZHENG Q, et al. Uptake and translocation of organophosphate esters by plants:impacts of chemical structure, plant cultivar and copper[J]. Environment International, 2021, 155:106591.
|
[36] |
LIU Q, LIU M L, WU S H, et al. Metabolomics reveals antioxidant stress responses of wheat (Triticum aestivum L.) exposed to chlorinated organophosphate esters[J]. Journal of Agricultural and Food Chemistry, 2020, 68(24):6520-6529.
|
[37] |
WANG L, HUANG X L, LASERNA A, et al. Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus[J]. Science of the Total Environment, 2020, 708:134498.
|
[38] |
LIU S L, ALI S, YANG R J, et al. A newly discovered Cd-hyperaccumulator Lantana camara L[J]. Journal of Hazardous Materials, 2019, 371:233-242.
|
[39] |
TRAPP S, EGGEN T. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions[J]. Environmental Science and Pollution Research, 2013, 20(6):4018-4029.
|
[40] |
陈迪, 李伯群, 杨永平, 等. 4种草本植物对镉的富集特征[J]. 环境科学, 2021, 42(2):960-966.
|
[41] |
LIU H W, WANG H Y, ZHANG Y, et al. Comparison of heavy metal accumulation and cadmium phytoextraction rates among tenleadingtobacco (Nicotiana tabacum L.) cultivarsin China[J]. International Journal of Phytoremediation, 2019, 21(7):699-706.
|
[42] |
WANG H, ZHAO Y M, ADEEL M, et al. Influence of celery on the remediation of PAHs contaminated farm soil[J]. Soil & Sediment Contamination, 2019, 28(2):200-212.
|
[43] |
SCHNOOR J, LICHT L, MCCUTCHEON S, et al. Phytoremediation of organic and nutrient contaminants[J]. Environmental Science & Technology, 1995, 29(7):318-323.
|
[44] |
CORGIE S, JONER E, LEYVAL C. Rhizospheric degradation of phenanthrene is a function of proximity to roots[J]. Plant and Soil, 2003, 257(1):143-150.
|
[45] |
许超, 夏北成. 运用多隔层根箱研究黑麦草根际微域中芘的降解[J]. 土壤学报, 2009, 46(3):426-433.
|
[46] |
杨静. PAHs污染土壤植物修复的根际效应及机制[D]. 杭州:浙江大学, 2012.
|