Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
JIANG Chunxu, FENG Junxiao, HUANG Xianmo, HUANG Zhifeng, ZHANG Zhitao. NUMERICAL OPTIMIZATION OF HEATING WELLS FOR REMEDIATION OF CONTAMINATED SOIL BASED ON IN-SITU THERMAL DESORPTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 163-171. doi: 10.13205/j.hjgc.202303022
Citation: JIANG Chunxu, FENG Junxiao, HUANG Xianmo, HUANG Zhifeng, ZHANG Zhitao. NUMERICAL OPTIMIZATION OF HEATING WELLS FOR REMEDIATION OF CONTAMINATED SOIL BASED ON IN-SITU THERMAL DESORPTION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 163-171. doi: 10.13205/j.hjgc.202303022

NUMERICAL OPTIMIZATION OF HEATING WELLS FOR REMEDIATION OF CONTAMINATED SOIL BASED ON IN-SITU THERMAL DESORPTION TECHNOLOGY

doi: 10.13205/j.hjgc.202303022
  • Received Date: 2022-04-26
    Available Online: 2023-05-26
  • Publish Date: 2023-03-01
  • In situ thermal desorption (ISTD), as a kind of physical soil remediation technology, has the advantages of in situ disposal of contaminated soil, less secondary pollution, simpler process principle, and higher efficiency and flexibility. In view of the problems of low removal efficiency and energy waste caused by unreasonable arrangement and neglection of thermal insulation measures in the actual process of soil remediation, COMSOL Multiphysics software was used to simulate the 1000 h heating process of contaminated soil. Based on the model verification, the effects of different arrangement methods, spacing of heating wells and thermal insulation measures on soil heating process were discussed. The results showed that when treating pollutants with a boiling point above 200 ℃, the triangular arrangement of 1.5 m heating well spacing could meet the treatment temperature requirements faster, and the energy consumption was relatively lower. Applying thermal insulation measures on the soil surface could not only prevent the leakage of polluted gas, but also effectively improve the thermal efficiency of soil heating process. In the triangular arrangement, the thermal efficiency was relatively increased by 11.667% after thermal insulation measures applied with a distance of 2.0 m between heating wells.
  • [1]
    全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11.
    [2]
    胡正,沈青.原位热脱附技术在有机污染地块中的修复效果研究[J].环境科技,2020, 33(6):30-34.
    [3]
    陈晶中,陈杰,谢学俭,等.土壤污染及其环境效应[J].土壤,2003,35(4):298-303.
    [4]
    李书鹏,焦文涛,李鸿炫,等.燃气热脱附技术修复有机污染场地研究与应用进展[J].环境工程学报,2019, 13(9):2037-2048.
    [5]
    刘惠.污染土壤热脱附技术的应用与发展趋势[J].环境与可持续发展,2019, 44(4):144-148.
    [6]
    缪周伟,吕树光,邱兆富,等.原位热处理技术修复重质非水相液体污染场地研究进展[J].环境污染与防治.2012, 34(8):63-68.
    [7]
    JULIA E V,KYRIACOS Z,CAROLINE A M, et al. Thermal treatment of hydrocarbon-impacted soils:a review of technology innovation for sustainable remediation[J]. Engineering, 2016, 2(4):426-437.
    [8]
    MERINO J, BUCALA V. EFFECT of temperature on the release of hexadecane from soil by thermal treatment[J]. Journal of Hazardous Materials, 2007, 143(1/2):455-461.
    [9]
    QI Z F, CHEN T, BAI S H, et al. Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil[J]. Environmental Science and Pollution Research, 2013, 21(6):4697-4704.
    [10]
    付建英,徐化,余权,等.原位热脱附修复污染土壤加热效果模拟和试验研究[J].能源工程,2021(1):70-73.
    [11]
    刘家巍. 原位热传导修复有机污染土壤温度场模拟研究[D]. 杭州:浙江大学, 2021.
    [12]
    张学良,廖朋辉,李群,等.复杂有机物污染地块原位热脱附修复技术的研究[J].土壤通报,2018, 49(4):993-1000.
    [13]
    HALDER A, DHALL A, DATTA A K. Modeling transport in porous media with phase change:applications to food processing[J]. Journal of Heat Transfer, 2011, 133(3):031010.
    [14]
    DATTA A K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. Ⅰ:problem formulations[J]. Journal of Food Engineering, 2007, 80(1):80-95.
    [15]
    DATTA A K. Porous media approaches to studying simultaneous heat and mass transfer in food processes. Ⅱ:property data and representative results[J]. Journal of Food Engineering, 2007, 80(1):96-110.
    [16]
    MURRU M, GIORGIO G, MONTOMOLI S, et al. Model-based scale-up of vacuum contact drying of pharmaceutical compounds[J]. Chem Eng Sci, 2011, 2011,66(21):5045-5054.
    [17]
    籍龙杰,刘鹏,韦云霄,等.单根加热管原位加热土壤过程中温度变化规律[J].环境工程,2019, 37(2):165-169.
    [18]
    勾立争, 刘长波, 刘诗诚,等. 热脱附法修复多环芳烃和汞复合污染土壤实验研究[J]. 环境工程, 2018, 36(2):184-187

    ,146.
    [19]
    陈佳雨,刘之葵.含水率及干密度对桂林红黏土抗剪强度的影响[J].中国岩溶,2019, 38(6):930-936.
    [20]
    XU X Y, HU N, WANG Q, et al. A numerical study of optimizing the well spacing and heating power for in situ thermal remediation of organic-contaminated soil[J]. Case Studies in Thermal Engineering, 2022,33.
    [21]
    王海东,翁芬芬,蔡长丰.含水率与粒径对非饱和砂土动力特性影响的试验研究[J].铁道科学与工程学报,2019, 16(2):359-366.
    [22]
    沈诣,胡鹏,张乙,等.泡沫混凝土作为原位土壤热修复隔热层的研究[J].能源与环境,2022(1):52-55.
  • Relative Articles

  • Cited by

    Periodical cited type(6)

    1. 高盼,王宇先,李欣洁,蔡姗姗,徐莹莹,杨慧莹,张巩亮. 半干旱区玉米秸秆还田方式对土壤富里酸含量及其结构特征的影响. 中国土壤与肥料. 2025(01): 35-44 .
    2. 王孔檀,麦力文,王定美,彭实亮,王熊飞,蒙赜,余小兰,林嘉聪,李勤奋. 基于PCA-HCA联合PLS回归模型的蚯蚓粪肥品质等级划分. 中国土壤与肥料. 2024(08): 198-210 .
    3. 李张龙翔,唐燕飞,戴晓虎. 高温预处理对易腐垃圾堆肥腐熟及细菌菌群结构的影响. 环境工程. 2023(06): 124-131+186 . 本站查看
    4. 侯智斌,谢益平,曹长春,徐锦涛. 添加不同比例玉米生物炭的堆肥腐殖质光谱学表征. 科学技术与工程. 2023(26): 11459-11475 .
    5. 王琼,王永歧,马怡,李哲,王岩,郭笑盈. 堆肥腐殖酸演化规律及堆肥工艺对其影响的研究进展. 应用化工. 2023(10): 2865-2869 .
    6. 李达,徐康宁,郭飞. 腐殖酸改良脱碱赤泥的环境风险评估. 环境工程技术学报. 2023(06): 2213-2220 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 83.1 %META: 83.1 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.8 %其他: 20.8 %其他: 0.5 %其他: 0.5 %上海: 1.0 %上海: 1.0 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %北京: 1.0 %北京: 1.0 %台州: 1.9 %台州: 1.9 %合肥: 1.0 %合肥: 1.0 %大同: 0.5 %大同: 0.5 %天津: 1.0 %天津: 1.0 %常德: 1.9 %常德: 1.9 %广州: 1.4 %广州: 1.4 %张家口: 1.0 %张家口: 1.0 %成都: 2.4 %成都: 2.4 %昆明: 1.4 %昆明: 1.4 %晋城: 1.0 %晋城: 1.0 %武汉: 1.4 %武汉: 1.4 %沈阳: 1.4 %沈阳: 1.4 %深圳: 0.5 %深圳: 0.5 %湖州: 1.9 %湖州: 1.9 %漯河: 2.4 %漯河: 2.4 %漳州: 0.5 %漳州: 0.5 %芒廷维尤: 22.7 %芒廷维尤: 22.7 %苏州: 0.5 %苏州: 0.5 %蚌埠: 0.5 %蚌埠: 0.5 %衡阳: 0.5 %衡阳: 0.5 %衢州: 1.0 %衢州: 1.0 %西宁: 17.9 %西宁: 17.9 %西安: 0.5 %西安: 0.5 %贵阳: 1.9 %贵阳: 1.9 %运城: 2.4 %运城: 2.4 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 1.9 %重庆: 1.9 %金昌: 1.0 %金昌: 1.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.5 %长治: 0.5 %青岛: 1.4 %青岛: 1.4 %其他其他上海临汾保定北京台州合肥大同天津常德广州张家口成都昆明晋城武汉沈阳深圳湖州漯河漳州芒廷维尤苏州蚌埠衡阳衢州西宁西安贵阳运城遵义郑州重庆金昌长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (210) PDF downloads(6) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return