Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 41 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
WU Jun. ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001
Citation: WU Jun. ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 1-9. doi: 10.13205/j.hjgc.202304001

ANALYSIS OF SETTLING VELOCITY OF PARTICULATES IN FLOWS IN DRY AND WET WEATHER FROM THE COMBINED SEWER

doi: 10.13205/j.hjgc.202304001
  • Received Date: 2022-02-25
    Available Online: 2023-05-26
  • Publish Date: 2023-04-01
  • The drainage pipes accept rainwater runoff and dry flow sewage, and form the combined sewer consisting of rainwater and sewage in wet weather. Some particles settle to form sediment. Comparing the settling velocity (SV) of particles in the above-mentioned routes will help to improve the control efficiency of wet weather flow. A section of the combined sewer was selected to collect water and sediment samples. The elutriation separation method was used to analyze the SV of particles. Based on this, the fitting relationship between SV and mass ratio was established. The results showed that the proportion of particulate matter with SV≥0.265 mm/s in the rain-sewage combined sewer was similar to that of the sediment, but was different from the stormwater runoff and dry-weather flow. This indicated that during the rainy days, some sediments were eroded, significantly promoting the SV of particles in wet-weather flows. Furthermore, under each SV, the higher the rainfall, the smaller the proportion of particles below that SV, and the higher the proportion of the unsettled particulate pollutants. The results showed that: a) more particles with higher SV were eroded into the wet-weather flow under higher rainfall; b) when the flow increased, more unsettled particulate pollutants entered the downstream of the pipe, resulting in the reduction of the gravity interception efficiency. In addition, PAHs, Cd, Cr and Pb accounted for high proportions of particles with SV≥0.265 mm/s. Therefore, when SV=0.265 mm/s was set for gravity sedimentation treatment measures, PAHs, Cd, Cr and Pb will be effectively reduced. Based on the above data, the relationship between SV of particulates and the mass ratio can be established, namely x=lnB/(A-y)(R2>0.95), which was helpful to realize the rapid transformation of the mass ratio of particles and particulate pollutants under the specific SV.
  • loading
  • [1]
    同济大学.《中华人民共和国水污染防治法》上海市实施情况评估报告[R]. 上海:上海市人民代表大会常务委员会, 2019.
    [2]
    XU Z X, XIONG L J, LI H Z, et al. Pollution characterization and source analysis of the wet weather discharges in storm drainages[J]. Desalination & Water Treatment, 2017, 72(APR.):169-181.
    [3]
    XU Z X, WU J, LI H Z, et al. Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity[J]. Science of the Total Environment, 2018, 625: 1272-1282.
    [4]
    赵庆豪. 雨天合流制排水系统水质水量调查与分析[D]. 武汉:武汉理工大学, 2013.
    [5]
    PIRO P, CARBONE M, GAROFALO G, et al. Size distribution of wet weather and dry weather particulate matter entrained in combined flows from an urbanizing sewershed[J]. Water Air and Soil Pollution, 2010, 206(1/2/3/4): 83-94.
    [6]
    HOWARD A, MOHSENI O, GULLIVER J, et al. SAFL Baffle retrofit for suspended sediment removal in storm sewer sumps[J]. Water Research, 2011, 45(18): 5895-5904.
    [7]
    HEDGES P D, BECKER F A, SMISSON R. The application of settling velocity as a parameter for characterising wastewater solids[J]. Water Science & Technology, 1998, 37(1): 45-52.
    [8]
    EXALL K, MARSALEK J, KRISHNAPPAN B G. Hydraulic fractionation of conventional water quality constituents in municipal dry-and wet-weather flow samples[J]. Water Science & Technology, 2009, 59(6): 1159-1167.
    [9]
    CHEBBO G, BACHOC A. Characterization of suspended solids in urban wet weather discharges[J]. Water Science & Technology, 1992, 25(8): 171-179.
    [10]
    KRISHNAPPAN B G, EXALL K, MARSALEK J, et al. Variability of settling characteristics of solids in dry and wet weather flows in combined sewers: implications for CSO treatment[J]. Water, Air, & Soil Pollution, 2012, 223(6): 3021-3032.
    [11]
    KRISHNAPPAN B G, MARSALEK J, EXALL K, et al. A water elutriation apparatus for measuring settling velocity distribution of suspended solids in combined sewer overflows[J]. Water Quality Research Journal, 2004, 39(4): 432-438.
    [12]
    MARSALEK J, KRISHNAPPAN B G, EXALL K, et al. An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs)[J]. Water Science & Technology, 2006, 54(6/7): 223-230.
    [13]
    国家环境保护局. 水质 悬浮物的测定 重量法:GB 11901—89[S]. 北京:中国标准出版社, 1991.
    [14]
    国家环境保护总局. 总有机碳(TOC)水质自动分析仪技术要求:HJ/T 104—2003[S]. 北京:中国环境科学出版社, 2003.
    [15]
    李政,高健磊,闫怡新. 一种快速测定污泥滤液中蛋白质含量的方法[J]. 给水排水, 2022, 58(S1): 30-33.
    [16]
    环境保护部. 固体废物 金属元素的测定 电感耦合等离子体质谱法[S]. 北京:中国环境科学出版社, 2015.
    [17]
    生态环境部. 固体废物 多环芳烃的测定 气象色谱-质谱法[S]. 北京:中国环境科学出版社, 2018.
    [18]
    赵梦圆,王建龙,黄涛,等. 北京市雨水径流中颗粒物沉降特性[J]. 环境工程, 2019, 37(2): 67-72.
    [19]
    GROMAIRE M C, KAFI-BENYAHIA M, GASPERI J, et al. Settling velocity of particulate pollutants from combined sewer wet weather discharges[J]. Water Science & Technology, 2008, 58(12): 2453.
    [20]
    XU Z, WU J, LI H, et al. Different erosion characteristics of sediment deposits in combined and storm sewers[J]. Water Science & Technology, 2017, 8(75): 1922-1931.
    [21]
    ZHANG J, HUA P, KREBS P. The chemical fractionation and potential source identification of Cu, Zn and Cd on urban watershed[J]. Water Science & Technology, 2015, 72(8): 1428-1436.
    [22]
    SANDOVAL S, TORRES A, PAWLOWSKY-REUSING E, et al. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study[J]. Water Science & Technology, 2013, 68(12): 2683-2690.
    [23]
    GASPERI J, LORGEOUX C, MOILLERON R, et al. Settling velocity grading of particle bound pahs: case of wet weather flows within combined sewer systems[J]. Journal of Environmental Engineering (New York, N.Y.), 2009, 135(11): 1155-1160.
    [24]
    ZHOU Y, ZHANG P, ZHANG Y, et al. Total and settling velocity-fractionated pollution potential of sewer sediments in Jiaxing, China[J]. Environmental Science and Pollution Research, 2017, 24(29): 23133-23143.
    [25]
    MARKUSSEN T N, ANDERSEN T J. A simple method for calculating in situ floc settling velocities based on effective density functions[J]. Marine Geology, 2013, 344(Complete): 10-18.
    [26]
    KOSTADINOV T S, SIEGEL D A, Maritorena S. Retrieval of the particle size distribution from satellite ocean color observations[J]. Journal of Geophysical Research, 2009, 114(C9): C9015.
    [27]
    YU J N, ZHAO R J, GAO Y X, et al. Effects of particle size on the zone settling velocity of activated sludge[J]. Environmental Engineering Science, 2016, 33(6): 423-429.
    [28]
    MARUÉJOULS T, LESSARD P, VANROLLEGHEM P. A. Calibration and validation of a dynamic model for water quality in combined sewer retention tanks[J]. Urban Water Journal, 2014, 11(8): 668-677.
    [29]
    MARUÉJOULS T, VANROLLEGHEM P A, PELLETIER G, et al. A phenomenological retention tank model using settling velocity distributions[J]. Water Research, 2012, 46(20): 6857-6867.
    [30]
    MENG D L, WU J, CHEN K L, et al. Effects of extracellular polymeric substances and microbial community on the anti-scouribility of sewer sediment[J]. Science of the Total Environment, 2019, 687: 494-504.
    [31]
    RIETVELD M, CLEMENS F, LANGEVELD J. Monitoring and characterising the solids loading dynamics to drainage systems via gully pots[J]. Urban Water Journal, 2021, 18(9): 699-710.
    [32]
    LIAO Z L, HU T T, ROKER S A C. An obstacle to China’s WWTPs: the COD and BOD standards for discharge into municipal sewers[J]. Environmental Science and Pollution Research, 2015, 22(21): 16434-16440.
    [33]
    DELETIC A, ORR D W. Pollution buildup on road surfaces[J]. Journal of Environmental Engineering, 2005, 131(1): 49-59.
    [34]
    BREUSERS H, RAUDKIVI A J. Scouring: Hydraulic Structures Design Manual Series, Vol. 2[M]. Rotterdam: A. A. Balkema Publishers, 1991.
    [35]
    SECO I, GÓMEZ V M, SCHELLART A, et al. Erosion resistance and behaviour of highly organic in-sewer sediment[J]. Water Science & Technology, 2014, 69(3): 672-679.
    [36]
    PATOWARY S, SARMA A K. Two-Dimensional Numerical Model for Urban Drainage System[M]//Sarma A K, Singh V P, Kartha S A, et al. Urban Hydrology, Watershed Management and Socio-Economic Aspects. Cham: Springer International Publishing, 2016, 163-173.
    [37]
    中华人民共和国住房和城乡建设部,国家市场监督管理总局. 室外排水设计标准:GB 50014—2021[S]. 北京:中国计划出版社,2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (654) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return