Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FU Xiaoyan, LI Zhenguo, LI Xiangyu, YANG Meng, LIU Lianlian, XIA Ying, SUN Zhen, LI Zhiyuan. ANTIBIOTIC POLLUTION CHARACTERISTICS AND ECOLOGICAL RISK ASSESSMENT OF WATER BODIES AROUND LIVESTOCK AND POULTRY BREEDING IN DALIAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 164-169. doi: 10.13205/j.hjgc.202304023
Citation: YANG Yong, CHEN Liping, GONG Yanfeng, JIN Chunming, WANG Shilin. EFFECT OF MICROBIAL GROWTH ON PERMEABILITY OF POROUS MEDIA BASED ON MULTI-SCALE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 49-54,153. doi: 10.13205/j.hjgc.202304007

EFFECT OF MICROBIAL GROWTH ON PERMEABILITY OF POROUS MEDIA BASED ON MULTI-SCALE METHOD

doi: 10.13205/j.hjgc.202304007
  • Received Date: 2022-04-16
    Available Online: 2023-05-26
  • Publish Date: 2023-04-01
  • In this paper, a coupling algorithm of microbial growth at pore scale and reduction of permeability at REV-scale was proposed, to analyze the effect law of microbial growth on the reduction of permeability, in order to provide a theoretical basis for effective controlling of microbial clogging in groundwater recharge. About the multi-scale coupled model: in pore-scale, the LBM-IBM coupled model were used to simulate the flow field in porous media, and the CA model was used to simulate microbial growth. A generalized seepage model was used to describe the fluid flow in the porous medium at the macroscopic scale. This study found that heterogeneity in microbial growth was significant in space due to preferential seepage of water and nutrients. The growth rate of microorganisms was the fastest at the inlet of the porous medium. The growth of microorganisms on the porous medium skeleton far from the inlet had little relationship with the upstream and downstream positions, but was directly related to the dominant flow. The dynamic change curve of local equivalent porosity with the different inlet concentrations of nutrients was used in REV calculations. In the results, the clogging in porous media occurs earlier by 18.0% to 30.7%, when the inlet concentration of nutrients doubles.
  • [1]
    陈玺君, 郭照立. 表征体元尺度渗流的离散统一动理学格式[J]. 计算物理, 2019,36(4):386-394. [9] HOMMEL J, COLTMAN E, CLASS H. Porosity-permeability relations for evolving pore space: a review with a focus on (bio-)geochemically altered porous media[J]. Transport in Porous Media, 2018, 124(2):589-629. [10] NITHIARASU P, SEETHARAMU K N, SUNDARARAJAN T. Natural convective heat transfer in a fluid saturated variable porosity medium[J]. International Journal of Heat and Mass Transfer, 1997, 40(16):3955-3967. [11] 蔡宏敏.热流的离散统一气体动理学算法及数值模拟[D].杭州:杭州电子科技大学,2021. [12] VANDEVIVERE P, BAVEYE P.Sturated hydraulic conductivity reduction caused by aerobic-bacteria in sand columns[J].Applied and Environmental Microbiology, 1992,58(8): 2523-2530. [13] PICIOREANU C, LOOSDRECHT M C M V, HEIJNEN J J. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study[J]. Biotechnology & Bioengineering, 2000, 69(5):504-515.

    KNIG S, VOGEL H J, HARMS H, et al. Physical, chemical and biological effects on soil bacterial dynamics in microscale models[J]. Frontiers in Ecology and Evolution, 2020, 3(8):53-62.[2] ZHAO T Y, ZHAO H W, NING Z F, et al. Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 118(mar.):368-377. [3] JUNG H, MEILE C.Pore-Scale numerical investigation of evolving porosity and permeability driven by biofilm growth[J].Transport In Porous Media, 2021(139):203-221. [4] BOTTERO S, STORCK T, HEIMOVAARA T J, et al. Biofilm development and the dynamics of preferential flow paths in porous media.[J]. Biofouling, 2013, 29(9/10):1069-1086. [5] TANG Y N, VALOCCHI A J, WERTH C J, et al. An improved pore-scale biofilm model and comparison with a microfluidic flow cell experiment[J]. Water Resources Research, 2013, 49(12):8370-8382. [6] DELAVAR M A, WANG J Y. Numerical investigation of pH control on dark fermentation and hydrogen production in a microbioreactor[J]. Fuel, 2021, 292(May 15):120355. [7] M, BENIOUG, F, et al. An immersed boundary-lattice Boltzmann model for biofilm growth in porous media-ScienceDirect[J]. Advances in Water Resources, 2017,107:65-82. [8]
  • Relative Articles

  • Cited by

    Periodical cited type(7)

    1. 谢作杰,董鹏宇,尹苗,邓永涛,陈希文. 微生态制剂的作用机制及其在家禽健康养殖中的应用. 黑龙江畜牧兽医. 2025(01): 15-19 .
    2. 赵悦,王春霞,赵梅云. 生态养殖模式在畜禽养殖中的应用. 现代农村科技. 2025(02): 77-78 .
    3. 董堃,唐宇坤,周欣雨,黄浩宇,王敦球,李海翔. 桂林市青狮潭水库沉积物抗生素污染特征及风险评估. 农业环境科学学报. 2024(01): 143-151 .
    4. 陈进,王亚娟,陶红,张锐. 规模化养殖园区土壤中抗生素污染特征和生态风险评价. 环境科学. 2024(07): 4302-4311 .
    5. 徐春燕,凌海波,张姝,向罗京,李苇苇,明德,易川. 湖北省四湖流域典型抗生素分布特征及生态风险评估. 安全与环境工程. 2023(05): 213-221 .
    6. 张亚萍,拓田田,李金金. 抗生素在多介质中污染现状研究进展. 山西化工. 2023(09): 50-52 .
    7. 张文斌,赵晶,张秀,王俭,刘灿,杨海蓉. 重庆市水环境中抗生素的污染特征及其风险评价. 生态毒理学报. 2023(06): 314-324 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.6 %FULLTEXT: 14.6 %META: 82.6 %META: 82.6 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.8 %其他: 11.8 %其他: 0.7 %其他: 0.7 %China: 3.1 %China: 3.1 %上海: 3.8 %上海: 3.8 %临汾: 0.3 %临汾: 0.3 %云浮: 0.3 %云浮: 0.3 %保定: 0.3 %保定: 0.3 %北京: 0.7 %北京: 0.7 %十堰: 0.3 %十堰: 0.3 %南京: 2.8 %南京: 2.8 %南宁: 2.1 %南宁: 2.1 %南昌: 0.3 %南昌: 0.3 %台州: 2.1 %台州: 2.1 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.7 %哈尔滨: 0.7 %大同: 0.3 %大同: 0.3 %大连: 4.2 %大连: 4.2 %天津: 1.4 %天津: 1.4 %常德: 1.0 %常德: 1.0 %广州: 0.3 %广州: 0.3 %张家口: 5.9 %张家口: 5.9 %惠州: 1.4 %惠州: 1.4 %成都: 0.3 %成都: 0.3 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 2.8 %杭州: 2.8 %格兰特县: 1.0 %格兰特县: 1.0 %武汉: 2.1 %武汉: 2.1 %沈阳: 1.0 %沈阳: 1.0 %温州: 0.7 %温州: 0.7 %甘南: 0.3 %甘南: 0.3 %芒廷维尤: 8.3 %芒廷维尤: 8.3 %芝加哥: 6.9 %芝加哥: 6.9 %苏州: 2.4 %苏州: 2.4 %衡阳: 0.3 %衡阳: 0.3 %西宁: 19.1 %西宁: 19.1 %西安: 0.7 %西安: 0.7 %贵阳: 1.4 %贵阳: 1.4 %运城: 2.4 %运城: 2.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.7 %郑州: 0.7 %重庆: 0.7 %重庆: 0.7 %金华: 0.3 %金华: 0.3 %银川: 0.7 %银川: 0.7 %青岛: 0.3 %青岛: 0.3 %其他其他China上海临汾云浮保定北京十堰南京南宁南昌台州合肥哈尔滨大同大连天津常德广州张家口惠州成都昆明晋城朝阳杭州格兰特县武汉沈阳温州甘南芒廷维尤芝加哥苏州衡阳西宁西安贵阳运城遵义邯郸郑州重庆金华银川青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (236) PDF downloads(14) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return